Gintautas Kamuntavičius, Alvaro Prat, Tanya Paquet, Orestis Bastas, Hisham Abdel Aty, Qing Sun, Carsten B. Andersen, John Harman, Marc E. Siladi, Daniel R. Rines, Sarah J. L. Flatters, Roy Tal, Povilas Norvaišas
{"title":"利用目标评估、深度学习和自动实验室加速命中识别:IRAK1 的前瞻性验证。","authors":"Gintautas Kamuntavičius, Alvaro Prat, Tanya Paquet, Orestis Bastas, Hisham Abdel Aty, Qing Sun, Carsten B. Andersen, John Harman, Marc E. Siladi, Daniel R. Rines, Sarah J. L. Flatters, Roy Tal, Povilas Norvaišas","doi":"10.1186/s13321-024-00914-0","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Target identification and hit identification can be transformed through the application of biomedical knowledge analysis, AI-driven virtual screening and robotic cloud lab systems. However there are few prospective studies that evaluate the efficacy of such integrated approaches.</p><h3>Results</h3><p>We synergistically integrate our in-house-developed target evaluation (SpectraView) and deep-learning-driven virtual screening (HydraScreen) tools with an automated robotic cloud lab designed explicitly for ultra-high-throughput screening, enabling us to validate these platforms experimentally. By employing our target evaluation tool to select IRAK1 as the focal point of our investigation, we prospectively validate our structure-based deep learning model. We can identify 23.8% of all IRAK1 hits within the top 1% of ranked compounds. The model outperforms traditional virtual screening techniques and offers advanced features such as ligand pose confidence scoring. Simultaneously, we identify three potent (nanomolar) scaffolds from our compound library, 2 of which represent novel candidates for IRAK1 and hold promise for future development.</p><h3>Conclusion</h3><p>This study provides compelling evidence for SpectraView and HydraScreen to provide a significant acceleration in the processes of target identification and hit discovery. By leveraging Ro5’s HydraScreen and Strateos’ automated labs in hit identification for IRAK1, we show how AI-driven virtual screening with HydraScreen could offer high hit discovery rates and reduce experimental costs.</p><h3>Scientific contribution</h3><p>We present an innovative platform that leverages Knowledge graph-based biomedical data analytics and AI-driven virtual screening integrated with robotic cloud labs. Through an unbiased, prospective evaluation we show the reliability and robustness of HydraScreen in virtual and high-throughput screening for hit identification in IRAK1. Our platforms and innovative tools can expedite the early stages of drug discovery.</p></div>","PeriodicalId":617,"journal":{"name":"Journal of Cheminformatics","volume":"16 1","pages":""},"PeriodicalIF":7.1000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://jcheminf.biomedcentral.com/counter/pdf/10.1186/s13321-024-00914-0","citationCount":"0","resultStr":"{\"title\":\"Accelerated hit identification with target evaluation, deep learning and automated labs: prospective validation in IRAK1\",\"authors\":\"Gintautas Kamuntavičius, Alvaro Prat, Tanya Paquet, Orestis Bastas, Hisham Abdel Aty, Qing Sun, Carsten B. Andersen, John Harman, Marc E. Siladi, Daniel R. Rines, Sarah J. L. Flatters, Roy Tal, Povilas Norvaišas\",\"doi\":\"10.1186/s13321-024-00914-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><p>Target identification and hit identification can be transformed through the application of biomedical knowledge analysis, AI-driven virtual screening and robotic cloud lab systems. However there are few prospective studies that evaluate the efficacy of such integrated approaches.</p><h3>Results</h3><p>We synergistically integrate our in-house-developed target evaluation (SpectraView) and deep-learning-driven virtual screening (HydraScreen) tools with an automated robotic cloud lab designed explicitly for ultra-high-throughput screening, enabling us to validate these platforms experimentally. By employing our target evaluation tool to select IRAK1 as the focal point of our investigation, we prospectively validate our structure-based deep learning model. We can identify 23.8% of all IRAK1 hits within the top 1% of ranked compounds. The model outperforms traditional virtual screening techniques and offers advanced features such as ligand pose confidence scoring. Simultaneously, we identify three potent (nanomolar) scaffolds from our compound library, 2 of which represent novel candidates for IRAK1 and hold promise for future development.</p><h3>Conclusion</h3><p>This study provides compelling evidence for SpectraView and HydraScreen to provide a significant acceleration in the processes of target identification and hit discovery. By leveraging Ro5’s HydraScreen and Strateos’ automated labs in hit identification for IRAK1, we show how AI-driven virtual screening with HydraScreen could offer high hit discovery rates and reduce experimental costs.</p><h3>Scientific contribution</h3><p>We present an innovative platform that leverages Knowledge graph-based biomedical data analytics and AI-driven virtual screening integrated with robotic cloud labs. Through an unbiased, prospective evaluation we show the reliability and robustness of HydraScreen in virtual and high-throughput screening for hit identification in IRAK1. Our platforms and innovative tools can expedite the early stages of drug discovery.</p></div>\",\"PeriodicalId\":617,\"journal\":{\"name\":\"Journal of Cheminformatics\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":7.1000,\"publicationDate\":\"2024-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://jcheminf.biomedcentral.com/counter/pdf/10.1186/s13321-024-00914-0\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cheminformatics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s13321-024-00914-0\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cheminformatics","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1186/s13321-024-00914-0","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Accelerated hit identification with target evaluation, deep learning and automated labs: prospective validation in IRAK1
Background
Target identification and hit identification can be transformed through the application of biomedical knowledge analysis, AI-driven virtual screening and robotic cloud lab systems. However there are few prospective studies that evaluate the efficacy of such integrated approaches.
Results
We synergistically integrate our in-house-developed target evaluation (SpectraView) and deep-learning-driven virtual screening (HydraScreen) tools with an automated robotic cloud lab designed explicitly for ultra-high-throughput screening, enabling us to validate these platforms experimentally. By employing our target evaluation tool to select IRAK1 as the focal point of our investigation, we prospectively validate our structure-based deep learning model. We can identify 23.8% of all IRAK1 hits within the top 1% of ranked compounds. The model outperforms traditional virtual screening techniques and offers advanced features such as ligand pose confidence scoring. Simultaneously, we identify three potent (nanomolar) scaffolds from our compound library, 2 of which represent novel candidates for IRAK1 and hold promise for future development.
Conclusion
This study provides compelling evidence for SpectraView and HydraScreen to provide a significant acceleration in the processes of target identification and hit discovery. By leveraging Ro5’s HydraScreen and Strateos’ automated labs in hit identification for IRAK1, we show how AI-driven virtual screening with HydraScreen could offer high hit discovery rates and reduce experimental costs.
Scientific contribution
We present an innovative platform that leverages Knowledge graph-based biomedical data analytics and AI-driven virtual screening integrated with robotic cloud labs. Through an unbiased, prospective evaluation we show the reliability and robustness of HydraScreen in virtual and high-throughput screening for hit identification in IRAK1. Our platforms and innovative tools can expedite the early stages of drug discovery.
期刊介绍:
Journal of Cheminformatics is an open access journal publishing original peer-reviewed research in all aspects of cheminformatics and molecular modelling.
Coverage includes, but is not limited to:
chemical information systems, software and databases, and molecular modelling,
chemical structure representations and their use in structure, substructure, and similarity searching of chemical substance and chemical reaction databases,
computer and molecular graphics, computer-aided molecular design, expert systems, QSAR, and data mining techniques.