Jilly F Evans, Owen A Ledwell, Yan Tang, Ryan Rue, Alexander R Mukhitov, Rémi Diesler, Susan M Lin, Swaroop V Kanth, Maria C Basil, Edward Cantu, Elizabeth P Henske, Vera P Krymskaya
{"title":"双酯抑制剂 RMC-5552 可降低 mTORC1 信号转导并促进淋巴管瘤病的生长","authors":"Jilly F Evans, Owen A Ledwell, Yan Tang, Ryan Rue, Alexander R Mukhitov, Rémi Diesler, Susan M Lin, Swaroop V Kanth, Maria C Basil, Edward Cantu, Elizabeth P Henske, Vera P Krymskaya","doi":"10.1165/rcmb.2024-0242OC","DOIUrl":null,"url":null,"abstract":"<p><p>Mutations in the Tuberous Sclerosis Complex (TSC) genes result in the hyperactivation of the mechanistic/mammalian target of rapamycin 1 (mTORC1) growth pathway in mesenchymal pulmonary cells. Rapamycin (Sirolimus<sup>TM</sup>), a naturally occurring macrolide, is the only therapeutic approved for women with lymphangioleiomyomatosis (LAM), a progressive, destructive lung disease caused by TSC gene mutations and mTORC1 hyperactivation. However, on cessation of the drug, lung function decline continues. We demonstrated here that pulmonary LAM cancer stem-like cells (SLS) most highly expressed the eukaryotic translation initiation factor 4E (eIF4E)-dependent translation initiation genes. We also showed that the eukaryotic initiation factor 4E-binding protein 1 (4E-BP1) gene has the lowest expression in these cells, indicating that the 4E-BP1/eIF4E ratio in LAM SLS cells favors unrestrained eIF4E oncogenic mRNA translation. The bi-steric mTORC1-selective compound RMC-5552 prevented growth of LAM-associated fibroblasts (LAFs) and phosphorylation of proteins in the ribosomal protein S6K1/ribosomal protein S6 (S6K1/S6) and 4E-BP1/eIF4E translation mTORC1-driven pathways, whereas rapamycin only blocked the S6K/S6 axis. Rapamycin inhibition of LAF growth was rapidly reversed, but RMC-5552 inhibition was more durable. RMC-5552, through its potential to eradicate LAM cancer SLS cells, may have therapeutic benefit in LAM and other diseases with mTORC1 hyperactivity.</p>","PeriodicalId":7655,"journal":{"name":"American Journal of Respiratory Cell and Molecular Biology","volume":" ","pages":""},"PeriodicalIF":5.9000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Bi-Steric Inhibitor RMC-5552 Reduces mTORC1 Signaling and Growth in Lymphangioleiomyomatosis.\",\"authors\":\"Jilly F Evans, Owen A Ledwell, Yan Tang, Ryan Rue, Alexander R Mukhitov, Rémi Diesler, Susan M Lin, Swaroop V Kanth, Maria C Basil, Edward Cantu, Elizabeth P Henske, Vera P Krymskaya\",\"doi\":\"10.1165/rcmb.2024-0242OC\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Mutations in the Tuberous Sclerosis Complex (TSC) genes result in the hyperactivation of the mechanistic/mammalian target of rapamycin 1 (mTORC1) growth pathway in mesenchymal pulmonary cells. Rapamycin (Sirolimus<sup>TM</sup>), a naturally occurring macrolide, is the only therapeutic approved for women with lymphangioleiomyomatosis (LAM), a progressive, destructive lung disease caused by TSC gene mutations and mTORC1 hyperactivation. However, on cessation of the drug, lung function decline continues. We demonstrated here that pulmonary LAM cancer stem-like cells (SLS) most highly expressed the eukaryotic translation initiation factor 4E (eIF4E)-dependent translation initiation genes. We also showed that the eukaryotic initiation factor 4E-binding protein 1 (4E-BP1) gene has the lowest expression in these cells, indicating that the 4E-BP1/eIF4E ratio in LAM SLS cells favors unrestrained eIF4E oncogenic mRNA translation. The bi-steric mTORC1-selective compound RMC-5552 prevented growth of LAM-associated fibroblasts (LAFs) and phosphorylation of proteins in the ribosomal protein S6K1/ribosomal protein S6 (S6K1/S6) and 4E-BP1/eIF4E translation mTORC1-driven pathways, whereas rapamycin only blocked the S6K/S6 axis. Rapamycin inhibition of LAF growth was rapidly reversed, but RMC-5552 inhibition was more durable. RMC-5552, through its potential to eradicate LAM cancer SLS cells, may have therapeutic benefit in LAM and other diseases with mTORC1 hyperactivity.</p>\",\"PeriodicalId\":7655,\"journal\":{\"name\":\"American Journal of Respiratory Cell and Molecular Biology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2024-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American Journal of Respiratory Cell and Molecular Biology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1165/rcmb.2024-0242OC\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Respiratory Cell and Molecular Biology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1165/rcmb.2024-0242OC","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
The Bi-Steric Inhibitor RMC-5552 Reduces mTORC1 Signaling and Growth in Lymphangioleiomyomatosis.
Mutations in the Tuberous Sclerosis Complex (TSC) genes result in the hyperactivation of the mechanistic/mammalian target of rapamycin 1 (mTORC1) growth pathway in mesenchymal pulmonary cells. Rapamycin (SirolimusTM), a naturally occurring macrolide, is the only therapeutic approved for women with lymphangioleiomyomatosis (LAM), a progressive, destructive lung disease caused by TSC gene mutations and mTORC1 hyperactivation. However, on cessation of the drug, lung function decline continues. We demonstrated here that pulmonary LAM cancer stem-like cells (SLS) most highly expressed the eukaryotic translation initiation factor 4E (eIF4E)-dependent translation initiation genes. We also showed that the eukaryotic initiation factor 4E-binding protein 1 (4E-BP1) gene has the lowest expression in these cells, indicating that the 4E-BP1/eIF4E ratio in LAM SLS cells favors unrestrained eIF4E oncogenic mRNA translation. The bi-steric mTORC1-selective compound RMC-5552 prevented growth of LAM-associated fibroblasts (LAFs) and phosphorylation of proteins in the ribosomal protein S6K1/ribosomal protein S6 (S6K1/S6) and 4E-BP1/eIF4E translation mTORC1-driven pathways, whereas rapamycin only blocked the S6K/S6 axis. Rapamycin inhibition of LAF growth was rapidly reversed, but RMC-5552 inhibition was more durable. RMC-5552, through its potential to eradicate LAM cancer SLS cells, may have therapeutic benefit in LAM and other diseases with mTORC1 hyperactivity.
期刊介绍:
The American Journal of Respiratory Cell and Molecular Biology publishes papers that report significant and original observations in the area of pulmonary biology. The focus of the Journal includes, but is not limited to, cellular, biochemical, molecular, developmental, genetic, and immunologic studies of lung cells and molecules.