Qian Xiang, Yaqin Du, Zhukai Cong, Yutian Xiao, Zhi Lu, Mingjie Shao, Jian Xie
{"title":"Warifteine Alleviates ALI and Inhibits NETosis by Decreasing ROS-induced GSDMD Oligomerization.","authors":"Qian Xiang, Yaqin Du, Zhukai Cong, Yutian Xiao, Zhi Lu, Mingjie Shao, Jian Xie","doi":"10.1165/rcmb.2024-0472OC","DOIUrl":null,"url":null,"abstract":"<p><p>Acute lung injury (ALI) is characterized by exaggerated inflammatory reactions and high clinical mortality rates, but targeted therapeutic interventions are lacking. Warifteine, which is a traditional remedy known for its anti-inflammatory properties, has been identified, but its potential effects on ALI remain unexplored. In this study, a murine model of ALI was established by injecting lipopolysaccharide (LPS) into wild-type or neutrophil-specific Gasdermin D (Gsdmd)-deficient mice. Pulmonary function was evaluated, and lung samples were collected for immunofluorescence staining and RNA sequencing analysis. Additionally, live imaging of the lungs as well as histological, biochemical, and molecular investigations were performed to assess the progression of LPS-induced ALI in mice. Mouse bone marrow-derived neutrophils were isolated and cultured to investigate the effects of warifteine in vitro. Our findings indicate that warifteine effectively mitigates LPS-induced lung pathology and dysfunction in mice. Mechanistic studies revealed that warifteine protects against ALI by inhibiting neutrophil extracellular trap (NET) formation and the resulting cytokine storm. Subsequent research demonstrated that warifteine influences NET formation by inhibiting GSDMD oligomerization through the regulation of reactive oxygen species (ROS) production by neutrophils. Collectively, these findings reveal a novel role for warifteine in the protection against ALI and suggest that modulating GSDMD oligomerization may be an innovative therapeutic strategy.</p>","PeriodicalId":7655,"journal":{"name":"American Journal of Respiratory Cell and Molecular Biology","volume":" ","pages":""},"PeriodicalIF":5.9000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Respiratory Cell and Molecular Biology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1165/rcmb.2024-0472OC","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Acute lung injury (ALI) is characterized by exaggerated inflammatory reactions and high clinical mortality rates, but targeted therapeutic interventions are lacking. Warifteine, which is a traditional remedy known for its anti-inflammatory properties, has been identified, but its potential effects on ALI remain unexplored. In this study, a murine model of ALI was established by injecting lipopolysaccharide (LPS) into wild-type or neutrophil-specific Gasdermin D (Gsdmd)-deficient mice. Pulmonary function was evaluated, and lung samples were collected for immunofluorescence staining and RNA sequencing analysis. Additionally, live imaging of the lungs as well as histological, biochemical, and molecular investigations were performed to assess the progression of LPS-induced ALI in mice. Mouse bone marrow-derived neutrophils were isolated and cultured to investigate the effects of warifteine in vitro. Our findings indicate that warifteine effectively mitigates LPS-induced lung pathology and dysfunction in mice. Mechanistic studies revealed that warifteine protects against ALI by inhibiting neutrophil extracellular trap (NET) formation and the resulting cytokine storm. Subsequent research demonstrated that warifteine influences NET formation by inhibiting GSDMD oligomerization through the regulation of reactive oxygen species (ROS) production by neutrophils. Collectively, these findings reveal a novel role for warifteine in the protection against ALI and suggest that modulating GSDMD oligomerization may be an innovative therapeutic strategy.
期刊介绍:
The American Journal of Respiratory Cell and Molecular Biology publishes papers that report significant and original observations in the area of pulmonary biology. The focus of the Journal includes, but is not limited to, cellular, biochemical, molecular, developmental, genetic, and immunologic studies of lung cells and molecules.