Huifang Yao, Seamus Kelley, Dan Zhou, Sophie VanSickle, Sheng-Ping Wang, Jennifer Piesvaux, Haihong Zhou, Hao Chen, David McKenney, David G McLaren, Jeanine E Ballard, Stephen F Previs
{"title":"量化体内蛋白质动力学:前体动力学对产物标记的影响。","authors":"Huifang Yao, Seamus Kelley, Dan Zhou, Sophie VanSickle, Sheng-Ping Wang, Jennifer Piesvaux, Haihong Zhou, Hao Chen, David McKenney, David G McLaren, Jeanine E Ballard, Stephen F Previs","doi":"10.1152/ajpendo.00323.2024","DOIUrl":null,"url":null,"abstract":"<p><p>Protein kinetics can be quantified by coupling stable isotope tracer methods with mass spectrometry readouts; however, inter-connected decision points in the experimental design affect the complexity of the workflow and impact data interpretations. For example, choosing between a single bolus (pulse-chase) or a continuous exposure protocol influences subsequent decisions regarding when to measure and how to model the temporal labeling of a target protein. Herein, we examine the merits of in vivo tracer protocols, we direct attention towards stable isotope tracer experiments that rely on administering a single bolus since these are generally more practical to use as compared to continuous administration protocols. We demonstrate how the interplay between precursor and product kinetics impacts downstream analytics and calculations by contrasting fast vs slow turnover precursors (e.g. <sup>13</sup>C-leucine vs <sup>2</sup>H-water, respectively). Although the data collected here underscore certain advantages of using longer lived precursors (e.g. <sup>2</sup>H- or <sup>18</sup>O-water) the results also highlight the influence of tracer recycling on measures of protein turnover. We discuss the impact of tracer recycling and consider how the sampling interval is critical for interpreting studies. Finally, we demonstrate that tracer recycling does not limit the ability to perform back-to-back studies of protein kinetics. It is possible to run experiments in which subjects are used as their own controls even though the precursor and product remain labeled following an initial tracer dosing.</p>","PeriodicalId":7594,"journal":{"name":"American journal of physiology. Endocrinology and metabolism","volume":" ","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantifying protein kinetics in vivo: Influence of precursor dynamics on product labeling.\",\"authors\":\"Huifang Yao, Seamus Kelley, Dan Zhou, Sophie VanSickle, Sheng-Ping Wang, Jennifer Piesvaux, Haihong Zhou, Hao Chen, David McKenney, David G McLaren, Jeanine E Ballard, Stephen F Previs\",\"doi\":\"10.1152/ajpendo.00323.2024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Protein kinetics can be quantified by coupling stable isotope tracer methods with mass spectrometry readouts; however, inter-connected decision points in the experimental design affect the complexity of the workflow and impact data interpretations. For example, choosing between a single bolus (pulse-chase) or a continuous exposure protocol influences subsequent decisions regarding when to measure and how to model the temporal labeling of a target protein. Herein, we examine the merits of in vivo tracer protocols, we direct attention towards stable isotope tracer experiments that rely on administering a single bolus since these are generally more practical to use as compared to continuous administration protocols. We demonstrate how the interplay between precursor and product kinetics impacts downstream analytics and calculations by contrasting fast vs slow turnover precursors (e.g. <sup>13</sup>C-leucine vs <sup>2</sup>H-water, respectively). Although the data collected here underscore certain advantages of using longer lived precursors (e.g. <sup>2</sup>H- or <sup>18</sup>O-water) the results also highlight the influence of tracer recycling on measures of protein turnover. We discuss the impact of tracer recycling and consider how the sampling interval is critical for interpreting studies. Finally, we demonstrate that tracer recycling does not limit the ability to perform back-to-back studies of protein kinetics. It is possible to run experiments in which subjects are used as their own controls even though the precursor and product remain labeled following an initial tracer dosing.</p>\",\"PeriodicalId\":7594,\"journal\":{\"name\":\"American journal of physiology. Endocrinology and metabolism\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American journal of physiology. Endocrinology and metabolism\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1152/ajpendo.00323.2024\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of physiology. Endocrinology and metabolism","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1152/ajpendo.00323.2024","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
Quantifying protein kinetics in vivo: Influence of precursor dynamics on product labeling.
Protein kinetics can be quantified by coupling stable isotope tracer methods with mass spectrometry readouts; however, inter-connected decision points in the experimental design affect the complexity of the workflow and impact data interpretations. For example, choosing between a single bolus (pulse-chase) or a continuous exposure protocol influences subsequent decisions regarding when to measure and how to model the temporal labeling of a target protein. Herein, we examine the merits of in vivo tracer protocols, we direct attention towards stable isotope tracer experiments that rely on administering a single bolus since these are generally more practical to use as compared to continuous administration protocols. We demonstrate how the interplay between precursor and product kinetics impacts downstream analytics and calculations by contrasting fast vs slow turnover precursors (e.g. 13C-leucine vs 2H-water, respectively). Although the data collected here underscore certain advantages of using longer lived precursors (e.g. 2H- or 18O-water) the results also highlight the influence of tracer recycling on measures of protein turnover. We discuss the impact of tracer recycling and consider how the sampling interval is critical for interpreting studies. Finally, we demonstrate that tracer recycling does not limit the ability to perform back-to-back studies of protein kinetics. It is possible to run experiments in which subjects are used as their own controls even though the precursor and product remain labeled following an initial tracer dosing.
期刊介绍:
The American Journal of Physiology-Endocrinology and Metabolism publishes original, mechanistic studies on the physiology of endocrine and metabolic systems. Physiological, cellular, and molecular studies in whole animals or humans will be considered. Specific themes include, but are not limited to, mechanisms of hormone and growth factor action; hormonal and nutritional regulation of metabolism, inflammation, microbiome and energy balance; integrative organ cross talk; paracrine and autocrine control of endocrine cells; function and activation of hormone receptors; endocrine or metabolic control of channels, transporters, and membrane function; temporal analysis of hormone secretion and metabolism; and mathematical/kinetic modeling of metabolism. Novel molecular, immunological, or biophysical studies of hormone action are also welcome.