Michael Gamal Fawzy , Soad S. Abd El-Hay , Alaa Ahmed Mostafa , Youstina Mekhail Metias
{"title":"评估分光光度法绿色可持续性的专用工具:光谱信号操作,用于消除替米沙坦和琥珀酸美托洛尔散装和药物制剂中的干扰光谱。","authors":"Michael Gamal Fawzy , Soad S. Abd El-Hay , Alaa Ahmed Mostafa , Youstina Mekhail Metias","doi":"10.1016/j.ab.2024.115711","DOIUrl":null,"url":null,"abstract":"<div><div>Hypertension is a leading cause of cardiovascular mortality, often accompanied by complications such as arrhythmia and stroke. This silent killer requires a multifaceted pharmacological approach for effective management. This article presents new, environmentally friendly spectrophotometric methods for simultaneous quantification of telmisartan (TER) and metoprolol succinate (MTR) in laboratory prepared mixtures and pharmaceutical formulations. The suggested methodologies include the following: area under the curve method (AUC) utilizing area at specific wavelength ranges 228–233 nm (<em>λ</em><sub>1</sub> – <em>λ</em><sub>2</sub>) and 240–245 nm (<em>λ</em><sub>3</sub> – <em>λ</em><sub>4</sub>) for each analyte and Fourier self-deconvolution method (FD) depending on built-in function to address spectral interferences. In addition, the induced dual wavelength method (IDWL) employing equality factors to obtain absorbance differences at designated wavelengths, ratio difference method (RD) utilizing divisor-based ratio spectra where the utilized divisors were TER 40 μg/mL and MTR 90 μg/mL, and ratio derivative method (RDV) generating spectra through first derivative application that was measured at 266 nm and 246 nm for TER and MTR, respectively. These methods offer green alternatives for the accurate and precise determination of TER and MTR with exceptional linearity of 3–45, and 15–200 μg/mL for TER and MTR, respectively. Furthermore, the methods showed a coefficient of determination exceeding 0.9995 and good detection and quantification levels. A comprehensive greenness assessment, employing five distinct evaluation tools, confirmed the reduced environmental impact of the proposed methods in terms of waste generation, chemical consumption, and instrument safety. Successful analysis of pharmaceutical formulations and laboratory prepared mixtures containing different TER and MTR ratios confirmed the validity of the proposed methods. Standard addition studies further supported these findings, and the statistical results were comparable to those obtained using a reference method.</div></div>","PeriodicalId":7830,"journal":{"name":"Analytical biochemistry","volume":"697 ","pages":"Article 115711"},"PeriodicalIF":2.6000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Specialized greenness sustainability tools for evaluation of the spectrophotometric methodologies greenness: Spectral signal manipulation for resolving the interfering telmisartan and metoprolol succinate spectra in their bulk and pharmaceutical formulation\",\"authors\":\"Michael Gamal Fawzy , Soad S. Abd El-Hay , Alaa Ahmed Mostafa , Youstina Mekhail Metias\",\"doi\":\"10.1016/j.ab.2024.115711\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Hypertension is a leading cause of cardiovascular mortality, often accompanied by complications such as arrhythmia and stroke. This silent killer requires a multifaceted pharmacological approach for effective management. This article presents new, environmentally friendly spectrophotometric methods for simultaneous quantification of telmisartan (TER) and metoprolol succinate (MTR) in laboratory prepared mixtures and pharmaceutical formulations. The suggested methodologies include the following: area under the curve method (AUC) utilizing area at specific wavelength ranges 228–233 nm (<em>λ</em><sub>1</sub> – <em>λ</em><sub>2</sub>) and 240–245 nm (<em>λ</em><sub>3</sub> – <em>λ</em><sub>4</sub>) for each analyte and Fourier self-deconvolution method (FD) depending on built-in function to address spectral interferences. In addition, the induced dual wavelength method (IDWL) employing equality factors to obtain absorbance differences at designated wavelengths, ratio difference method (RD) utilizing divisor-based ratio spectra where the utilized divisors were TER 40 μg/mL and MTR 90 μg/mL, and ratio derivative method (RDV) generating spectra through first derivative application that was measured at 266 nm and 246 nm for TER and MTR, respectively. These methods offer green alternatives for the accurate and precise determination of TER and MTR with exceptional linearity of 3–45, and 15–200 μg/mL for TER and MTR, respectively. Furthermore, the methods showed a coefficient of determination exceeding 0.9995 and good detection and quantification levels. A comprehensive greenness assessment, employing five distinct evaluation tools, confirmed the reduced environmental impact of the proposed methods in terms of waste generation, chemical consumption, and instrument safety. Successful analysis of pharmaceutical formulations and laboratory prepared mixtures containing different TER and MTR ratios confirmed the validity of the proposed methods. Standard addition studies further supported these findings, and the statistical results were comparable to those obtained using a reference method.</div></div>\",\"PeriodicalId\":7830,\"journal\":{\"name\":\"Analytical biochemistry\",\"volume\":\"697 \",\"pages\":\"Article 115711\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analytical biochemistry\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0003269724002550\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical biochemistry","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0003269724002550","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Specialized greenness sustainability tools for evaluation of the spectrophotometric methodologies greenness: Spectral signal manipulation for resolving the interfering telmisartan and metoprolol succinate spectra in their bulk and pharmaceutical formulation
Hypertension is a leading cause of cardiovascular mortality, often accompanied by complications such as arrhythmia and stroke. This silent killer requires a multifaceted pharmacological approach for effective management. This article presents new, environmentally friendly spectrophotometric methods for simultaneous quantification of telmisartan (TER) and metoprolol succinate (MTR) in laboratory prepared mixtures and pharmaceutical formulations. The suggested methodologies include the following: area under the curve method (AUC) utilizing area at specific wavelength ranges 228–233 nm (λ1 – λ2) and 240–245 nm (λ3 – λ4) for each analyte and Fourier self-deconvolution method (FD) depending on built-in function to address spectral interferences. In addition, the induced dual wavelength method (IDWL) employing equality factors to obtain absorbance differences at designated wavelengths, ratio difference method (RD) utilizing divisor-based ratio spectra where the utilized divisors were TER 40 μg/mL and MTR 90 μg/mL, and ratio derivative method (RDV) generating spectra through first derivative application that was measured at 266 nm and 246 nm for TER and MTR, respectively. These methods offer green alternatives for the accurate and precise determination of TER and MTR with exceptional linearity of 3–45, and 15–200 μg/mL for TER and MTR, respectively. Furthermore, the methods showed a coefficient of determination exceeding 0.9995 and good detection and quantification levels. A comprehensive greenness assessment, employing five distinct evaluation tools, confirmed the reduced environmental impact of the proposed methods in terms of waste generation, chemical consumption, and instrument safety. Successful analysis of pharmaceutical formulations and laboratory prepared mixtures containing different TER and MTR ratios confirmed the validity of the proposed methods. Standard addition studies further supported these findings, and the statistical results were comparable to those obtained using a reference method.
期刊介绍:
The journal''s title Analytical Biochemistry: Methods in the Biological Sciences declares its broad scope: methods for the basic biological sciences that include biochemistry, molecular genetics, cell biology, proteomics, immunology, bioinformatics and wherever the frontiers of research take the field.
The emphasis is on methods from the strictly analytical to the more preparative that would include novel approaches to protein purification as well as improvements in cell and organ culture. The actual techniques are equally inclusive ranging from aptamers to zymology.
The journal has been particularly active in:
-Analytical techniques for biological molecules-
Aptamer selection and utilization-
Biosensors-
Chromatography-
Cloning, sequencing and mutagenesis-
Electrochemical methods-
Electrophoresis-
Enzyme characterization methods-
Immunological approaches-
Mass spectrometry of proteins and nucleic acids-
Metabolomics-
Nano level techniques-
Optical spectroscopy in all its forms.
The journal is reluctant to include most drug and strictly clinical studies as there are more suitable publication platforms for these types of papers.