{"title":"在犬尸体中使用三维容积渲染技术评估三维打印患者特异性脑活检指南的准确性。","authors":"Minseung Jeong, Jongchan Ko, Yong Yu, Suyoung Heo","doi":"10.3390/ani14213163","DOIUrl":null,"url":null,"abstract":"<p><p>The objective of this study was to evaluate the accuracy of a CT-based, 3D-printed, patient-specific brain biopsy guide (3D-psBBG) through the application of a transfrontal approach in canine cadavers. A total of ten canine cadavers, with weights ranging from 4.36 to 14.4 kg, were subjected to preoperative CT scans to generate 3D skull models. Customized biopsy guides were created based on these models and manufactured using 3D printing technology. Twenty spinal needle insertions were performed, and the accuracy of needle placement was evaluated through both CT and 3D volume-rendering techniques. The mean needle placement error was 2.1 mm, with no significant differences observed between insertions targeting the fronto-olfactory and piriform lobes. The 3D volume-rendering method demonstrated superior accuracy compared to the CT method, with statistically significant differences in placement errors for both targets. The average time required for the design and manufacture of the guides was 249 min. These findings indicate the high accuracy and potential clinical application of CT-based 3D-psBBG for improving diagnostic outcomes in veterinary neurology.</p>","PeriodicalId":7955,"journal":{"name":"Animals","volume":"14 21","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11545512/pdf/","citationCount":"0","resultStr":"{\"title\":\"Evaluation of the Accuracy of 3D Printed Patient-Specific Brain Biopsy Guide Using 3D Volume Rendering Technique in Canine Cadavers.\",\"authors\":\"Minseung Jeong, Jongchan Ko, Yong Yu, Suyoung Heo\",\"doi\":\"10.3390/ani14213163\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The objective of this study was to evaluate the accuracy of a CT-based, 3D-printed, patient-specific brain biopsy guide (3D-psBBG) through the application of a transfrontal approach in canine cadavers. A total of ten canine cadavers, with weights ranging from 4.36 to 14.4 kg, were subjected to preoperative CT scans to generate 3D skull models. Customized biopsy guides were created based on these models and manufactured using 3D printing technology. Twenty spinal needle insertions were performed, and the accuracy of needle placement was evaluated through both CT and 3D volume-rendering techniques. The mean needle placement error was 2.1 mm, with no significant differences observed between insertions targeting the fronto-olfactory and piriform lobes. The 3D volume-rendering method demonstrated superior accuracy compared to the CT method, with statistically significant differences in placement errors for both targets. The average time required for the design and manufacture of the guides was 249 min. These findings indicate the high accuracy and potential clinical application of CT-based 3D-psBBG for improving diagnostic outcomes in veterinary neurology.</p>\",\"PeriodicalId\":7955,\"journal\":{\"name\":\"Animals\",\"volume\":\"14 21\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11545512/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Animals\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.3390/ani14213163\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURE, DAIRY & ANIMAL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Animals","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3390/ani14213163","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
Evaluation of the Accuracy of 3D Printed Patient-Specific Brain Biopsy Guide Using 3D Volume Rendering Technique in Canine Cadavers.
The objective of this study was to evaluate the accuracy of a CT-based, 3D-printed, patient-specific brain biopsy guide (3D-psBBG) through the application of a transfrontal approach in canine cadavers. A total of ten canine cadavers, with weights ranging from 4.36 to 14.4 kg, were subjected to preoperative CT scans to generate 3D skull models. Customized biopsy guides were created based on these models and manufactured using 3D printing technology. Twenty spinal needle insertions were performed, and the accuracy of needle placement was evaluated through both CT and 3D volume-rendering techniques. The mean needle placement error was 2.1 mm, with no significant differences observed between insertions targeting the fronto-olfactory and piriform lobes. The 3D volume-rendering method demonstrated superior accuracy compared to the CT method, with statistically significant differences in placement errors for both targets. The average time required for the design and manufacture of the guides was 249 min. These findings indicate the high accuracy and potential clinical application of CT-based 3D-psBBG for improving diagnostic outcomes in veterinary neurology.
AnimalsAgricultural and Biological Sciences-Animal Science and Zoology
CiteScore
4.90
自引率
16.70%
发文量
3015
审稿时长
20.52 days
期刊介绍:
Animals (ISSN 2076-2615) is an international and interdisciplinary scholarly open access journal. It publishes original research articles, reviews, communications, and short notes that are relevant to any field of study that involves animals, including zoology, ethnozoology, animal science, animal ethics and animal welfare. However, preference will be given to those articles that provide an understanding of animals within a larger context (i.e., the animals'' interactions with the outside world, including humans). There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental details and/or method of study, must be provided for research articles. Articles submitted that involve subjecting animals to unnecessary pain or suffering will not be accepted, and all articles must be submitted with the necessary ethical approval (please refer to the Ethical Guidelines for more information).