在可见光照射下光降解磺胺甲噁唑的纳米结构 MnO x /g-C3N4

IF 3.9 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY RSC Advances Pub Date : 2024-11-14 DOI:10.1039/D4RA05996D
Oanh T. K. Nguyen, Vinh Huu Nguyen, Nong Xuan Linh, Minh Que Doan, Lan-Anh T. Hoang, Taeyoon Lee and Trinh Duy Nguyen
{"title":"在可见光照射下光降解磺胺甲噁唑的纳米结构 MnO x /g-C3N4","authors":"Oanh T. K. Nguyen, Vinh Huu Nguyen, Nong Xuan Linh, Minh Que Doan, Lan-Anh T. Hoang, Taeyoon Lee and Trinh Duy Nguyen","doi":"10.1039/D4RA05996D","DOIUrl":null,"url":null,"abstract":"<p >The effectiveness of g-C<small><sub>3</sub></small>N<small><sub>4</sub></small> as photocatalyst is hindered by the rapid recombination of photo-generated electron/hole pairs. To improve its photocatalytic performance, the incorporation of g-C<small><sub>3</sub></small>N<small><sub>4</sub></small> with co-catalysts can promote charge separation efficiency and enhance redox capabilities. In our study, a two-step approach involving calcination and solvothermal method was utilized to fabricate a proficient MnO<small><sub><em>x</em></sub></small>/g-C<small><sub>3</sub></small>N<small><sub>4</sub></small> heterojunction photocatalyst with high photocatalytic activity. MnO<small><sub><em>x</em></sub></small> is effective at capturing holes to impede the recombination of electron/hole pairs. The MnO<small><sub><em>x</em></sub></small>/g-C<small><sub>3</sub></small>N<small><sub>4</sub></small> composite shows a notable improvement in photocatalytic degradation of SMX, obtaining an 85% degradation rate, surpassing that of pure g-C<small><sub>3</sub></small>N<small><sub>4</sub></small>. Furthermore, the MnO<small><sub><em>x</em></sub></small>/g-C<small><sub>3</sub></small>N<small><sub>4</sub></small> composite exhibits remarkable and enduring catalytic degradation capabilities for sulfamethoxazole (SMX), even after four consecutive reuse cycles. The intermediates produced in the MnO<small><sub><em>x</em></sub></small>/g-C<small><sub>3</sub></small>N<small><sub>4</sub></small> system are found to be less hazardous to common aquatic creatures such as fish, daphnids, and green algae when compared to SMX. With its high tolerance, exceptional degradation ability, and minimal ecological risk, the MnO<small><sub><em>x</em></sub></small>/g-C<small><sub>3</sub></small>N<small><sub>4</sub></small> composite emerges as a promising candidate for eliminating antibiotics from wastewater resources.</p>","PeriodicalId":102,"journal":{"name":"RSC Advances","volume":" 49","pages":" 36378-36389"},"PeriodicalIF":3.9000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11561708/pdf/","citationCount":"0","resultStr":"{\"title\":\"Nanostructured MnOx/g-C3N4 for photodegradation of sulfamethoxazole under visible light irradiation†\",\"authors\":\"Oanh T. K. Nguyen, Vinh Huu Nguyen, Nong Xuan Linh, Minh Que Doan, Lan-Anh T. Hoang, Taeyoon Lee and Trinh Duy Nguyen\",\"doi\":\"10.1039/D4RA05996D\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The effectiveness of g-C<small><sub>3</sub></small>N<small><sub>4</sub></small> as photocatalyst is hindered by the rapid recombination of photo-generated electron/hole pairs. To improve its photocatalytic performance, the incorporation of g-C<small><sub>3</sub></small>N<small><sub>4</sub></small> with co-catalysts can promote charge separation efficiency and enhance redox capabilities. In our study, a two-step approach involving calcination and solvothermal method was utilized to fabricate a proficient MnO<small><sub><em>x</em></sub></small>/g-C<small><sub>3</sub></small>N<small><sub>4</sub></small> heterojunction photocatalyst with high photocatalytic activity. MnO<small><sub><em>x</em></sub></small> is effective at capturing holes to impede the recombination of electron/hole pairs. The MnO<small><sub><em>x</em></sub></small>/g-C<small><sub>3</sub></small>N<small><sub>4</sub></small> composite shows a notable improvement in photocatalytic degradation of SMX, obtaining an 85% degradation rate, surpassing that of pure g-C<small><sub>3</sub></small>N<small><sub>4</sub></small>. Furthermore, the MnO<small><sub><em>x</em></sub></small>/g-C<small><sub>3</sub></small>N<small><sub>4</sub></small> composite exhibits remarkable and enduring catalytic degradation capabilities for sulfamethoxazole (SMX), even after four consecutive reuse cycles. The intermediates produced in the MnO<small><sub><em>x</em></sub></small>/g-C<small><sub>3</sub></small>N<small><sub>4</sub></small> system are found to be less hazardous to common aquatic creatures such as fish, daphnids, and green algae when compared to SMX. With its high tolerance, exceptional degradation ability, and minimal ecological risk, the MnO<small><sub><em>x</em></sub></small>/g-C<small><sub>3</sub></small>N<small><sub>4</sub></small> composite emerges as a promising candidate for eliminating antibiotics from wastewater resources.</p>\",\"PeriodicalId\":102,\"journal\":{\"name\":\"RSC Advances\",\"volume\":\" 49\",\"pages\":\" 36378-36389\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11561708/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"RSC Advances\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/ra/d4ra05996d\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSC Advances","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/ra/d4ra05996d","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

g-C3N4 作为光催化剂的有效性受到光生电子/空穴对快速重组的阻碍。为了提高其光催化性能,g-C3N4 与助催化剂的结合可以提高电荷分离效率并增强氧化还原能力。在我们的研究中,利用煅烧和溶热两步法制备出了具有高光催化活性的 MnO x /g-C3N4 异质结光催化剂。MnO x 能有效捕获空穴,阻碍电子/空穴对的重组。MnO x /g-C3N4 复合材料在光催化降解 SMX 方面有显著改善,降解率达到 85%,超过了纯 g-C3N4。此外,MnO x /g-C3N4 复合材料对磺胺甲噁唑(SMX)具有显著而持久的催化降解能力,即使在连续重复使用四个周期后也是如此。与 SMX 相比,MnO x /g-C3N4 系统产生的中间产物对鱼类、水蚤和绿藻等常见水生生物的危害较小。MnO x /g-C3N4 复合材料具有很强的耐受性、出色的降解能力和极低的生态风险,是消除废水资源中抗生素的理想候选材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Nanostructured MnOx/g-C3N4 for photodegradation of sulfamethoxazole under visible light irradiation†

The effectiveness of g-C3N4 as photocatalyst is hindered by the rapid recombination of photo-generated electron/hole pairs. To improve its photocatalytic performance, the incorporation of g-C3N4 with co-catalysts can promote charge separation efficiency and enhance redox capabilities. In our study, a two-step approach involving calcination and solvothermal method was utilized to fabricate a proficient MnOx/g-C3N4 heterojunction photocatalyst with high photocatalytic activity. MnOx is effective at capturing holes to impede the recombination of electron/hole pairs. The MnOx/g-C3N4 composite shows a notable improvement in photocatalytic degradation of SMX, obtaining an 85% degradation rate, surpassing that of pure g-C3N4. Furthermore, the MnOx/g-C3N4 composite exhibits remarkable and enduring catalytic degradation capabilities for sulfamethoxazole (SMX), even after four consecutive reuse cycles. The intermediates produced in the MnOx/g-C3N4 system are found to be less hazardous to common aquatic creatures such as fish, daphnids, and green algae when compared to SMX. With its high tolerance, exceptional degradation ability, and minimal ecological risk, the MnOx/g-C3N4 composite emerges as a promising candidate for eliminating antibiotics from wastewater resources.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
RSC Advances
RSC Advances chemical sciences-
CiteScore
7.50
自引率
2.60%
发文量
3116
审稿时长
1.6 months
期刊介绍: An international, peer-reviewed journal covering all of the chemical sciences, including multidisciplinary and emerging areas. RSC Advances is a gold open access journal allowing researchers free access to research articles, and offering an affordable open access publishing option for authors around the world.
期刊最新文献
Combining de novo molecular design with semiempirical protein–ligand binding free energy calculation† Characterization and enhanced carbon dioxide sensing performance of spin-coated Na- and Li-doped and Co-doped cobalt oxide thin films† Regulation of oxidative stress enzymes in Candida auris by Dermaseptin: potential implications for antifungal drug discovery Design of an LiF-rich interface layer using high-concentration fluoroethylene carbonate and lithium bis(fluorosulfonyl)imide (LiFSI) to stabilize Li metal batteries A catalytic approach for the dehydrogenative upgradation of crude glycerol to lactate and hydrogen generation†
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1