Nadesh Fiuza-Maneiro, Jose Mendoza-Carreño, Sergio Gómez-Graña, Maria Isabel Alonso, Lakshminarayana Polavarapu, Agustín Mihi
{"title":"利用手性元表面诱导包光体纳米晶体的高效多波长圆偏振发射。","authors":"Nadesh Fiuza-Maneiro, Jose Mendoza-Carreño, Sergio Gómez-Graña, Maria Isabel Alonso, Lakshminarayana Polavarapu, Agustín Mihi","doi":"10.1002/adma.202413967","DOIUrl":null,"url":null,"abstract":"<p><p>Chiral nano-emitters have recently received great research attention due to their technological applications and the need for a fundamental scientific understanding of the structure-property nexus of these nanoscale materials. Lead halide perovskite nanocrystals (LHP NCs) with many interesting optical properties have anticipated great promise for generating chiral emission. However, inducing high anisotropy chiral emission from achiral perovskite NCs remains challenging. Although chiral ligands have been used to induce chirality, their anisotropy factors (g<sub>lum</sub>) are low [10<sup>-3</sup> to 10<sup>-2</sup>]. Herein, the generation of high anisotropy circularly polarized photoluminescence (CPL) from LHP NCs is demonstrated using chiral metasurfaces by depositing nanocrystals on top of prefabricated resonant photonic structures (2D gammadion arrays). This scalable approach results in CPL with g<sub>lum</sub> to a record high of 0.56 for perovskite NCs. Furthermore, the differences between high-index dielectric chiral metasurfaces and metallic ones are explored for inducing chiral emission. More importantly, the generation of simultaneous multi-wavelength circularly polarized light is demonstrated by combining dielectric and metallic chiral metasurfaces.</p>","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":null,"pages":null},"PeriodicalIF":27.4000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inducing Efficient and Multiwavelength Circularly Polarized Emission From Perovskite Nanocrystals Using Chiral Metasurfaces.\",\"authors\":\"Nadesh Fiuza-Maneiro, Jose Mendoza-Carreño, Sergio Gómez-Graña, Maria Isabel Alonso, Lakshminarayana Polavarapu, Agustín Mihi\",\"doi\":\"10.1002/adma.202413967\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Chiral nano-emitters have recently received great research attention due to their technological applications and the need for a fundamental scientific understanding of the structure-property nexus of these nanoscale materials. Lead halide perovskite nanocrystals (LHP NCs) with many interesting optical properties have anticipated great promise for generating chiral emission. However, inducing high anisotropy chiral emission from achiral perovskite NCs remains challenging. Although chiral ligands have been used to induce chirality, their anisotropy factors (g<sub>lum</sub>) are low [10<sup>-3</sup> to 10<sup>-2</sup>]. Herein, the generation of high anisotropy circularly polarized photoluminescence (CPL) from LHP NCs is demonstrated using chiral metasurfaces by depositing nanocrystals on top of prefabricated resonant photonic structures (2D gammadion arrays). This scalable approach results in CPL with g<sub>lum</sub> to a record high of 0.56 for perovskite NCs. Furthermore, the differences between high-index dielectric chiral metasurfaces and metallic ones are explored for inducing chiral emission. More importantly, the generation of simultaneous multi-wavelength circularly polarized light is demonstrated by combining dielectric and metallic chiral metasurfaces.</p>\",\"PeriodicalId\":114,\"journal\":{\"name\":\"Advanced Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":27.4000,\"publicationDate\":\"2024-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/adma.202413967\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202413967","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Inducing Efficient and Multiwavelength Circularly Polarized Emission From Perovskite Nanocrystals Using Chiral Metasurfaces.
Chiral nano-emitters have recently received great research attention due to their technological applications and the need for a fundamental scientific understanding of the structure-property nexus of these nanoscale materials. Lead halide perovskite nanocrystals (LHP NCs) with many interesting optical properties have anticipated great promise for generating chiral emission. However, inducing high anisotropy chiral emission from achiral perovskite NCs remains challenging. Although chiral ligands have been used to induce chirality, their anisotropy factors (glum) are low [10-3 to 10-2]. Herein, the generation of high anisotropy circularly polarized photoluminescence (CPL) from LHP NCs is demonstrated using chiral metasurfaces by depositing nanocrystals on top of prefabricated resonant photonic structures (2D gammadion arrays). This scalable approach results in CPL with glum to a record high of 0.56 for perovskite NCs. Furthermore, the differences between high-index dielectric chiral metasurfaces and metallic ones are explored for inducing chiral emission. More importantly, the generation of simultaneous multi-wavelength circularly polarized light is demonstrated by combining dielectric and metallic chiral metasurfaces.
期刊介绍:
Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.