{"title":"为开发人工光收集系统和色彩可调 LED 设备而增强聚电解质组件的发射。","authors":"Qunpeng Duan, Xiuxiu Li, Zhiying Wu, Shihao Lin, Rong Zeng, Tangxin Xiao","doi":"10.1002/marc.202400752","DOIUrl":null,"url":null,"abstract":"<p><p>Artificial light-harvesting systems (LHSs) are of growing interest for their potential in energy capture and conversion, but achieving efficient fluorescence in aqueous environments remains challenging. In this study, a novel tetraphenylethylene (TPE) derivative, TPEN, is synthesized and co-assembled with poly(sodium 4-styrenesulfonate) (PSS) to enhance its fluorescence via electrostatic interactions. The resulting PSS⊃TPEN network significantly increased blue emission, which is further harnessed by an energy-matched dye, 4,7-di(2-thienyl)benzo[2,1,3]thiadiazole (DBT), to produce an efficient LHS with yellow emission. Moreover, this system is successfully applied to develop color-tunable light-emitting diode (LED) devices. The findings demonstrate a cost-effective and environmentally friendly approach to designing tunable luminescent materials, with promising potential for future advancements in energy-efficient lighting technologies.</p>","PeriodicalId":205,"journal":{"name":"Macromolecular Rapid Communications","volume":" ","pages":"e2400752"},"PeriodicalIF":4.2000,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced Emission in Polyelectrolyte Assemblies for the Development of Artificial Light-Harvesting Systems and Color-Tunable LED Device.\",\"authors\":\"Qunpeng Duan, Xiuxiu Li, Zhiying Wu, Shihao Lin, Rong Zeng, Tangxin Xiao\",\"doi\":\"10.1002/marc.202400752\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Artificial light-harvesting systems (LHSs) are of growing interest for their potential in energy capture and conversion, but achieving efficient fluorescence in aqueous environments remains challenging. In this study, a novel tetraphenylethylene (TPE) derivative, TPEN, is synthesized and co-assembled with poly(sodium 4-styrenesulfonate) (PSS) to enhance its fluorescence via electrostatic interactions. The resulting PSS⊃TPEN network significantly increased blue emission, which is further harnessed by an energy-matched dye, 4,7-di(2-thienyl)benzo[2,1,3]thiadiazole (DBT), to produce an efficient LHS with yellow emission. Moreover, this system is successfully applied to develop color-tunable light-emitting diode (LED) devices. The findings demonstrate a cost-effective and environmentally friendly approach to designing tunable luminescent materials, with promising potential for future advancements in energy-efficient lighting technologies.</p>\",\"PeriodicalId\":205,\"journal\":{\"name\":\"Macromolecular Rapid Communications\",\"volume\":\" \",\"pages\":\"e2400752\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Macromolecular Rapid Communications\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/marc.202400752\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular Rapid Communications","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/marc.202400752","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
Enhanced Emission in Polyelectrolyte Assemblies for the Development of Artificial Light-Harvesting Systems and Color-Tunable LED Device.
Artificial light-harvesting systems (LHSs) are of growing interest for their potential in energy capture and conversion, but achieving efficient fluorescence in aqueous environments remains challenging. In this study, a novel tetraphenylethylene (TPE) derivative, TPEN, is synthesized and co-assembled with poly(sodium 4-styrenesulfonate) (PSS) to enhance its fluorescence via electrostatic interactions. The resulting PSS⊃TPEN network significantly increased blue emission, which is further harnessed by an energy-matched dye, 4,7-di(2-thienyl)benzo[2,1,3]thiadiazole (DBT), to produce an efficient LHS with yellow emission. Moreover, this system is successfully applied to develop color-tunable light-emitting diode (LED) devices. The findings demonstrate a cost-effective and environmentally friendly approach to designing tunable luminescent materials, with promising potential for future advancements in energy-efficient lighting technologies.
期刊介绍:
Macromolecular Rapid Communications publishes original research in polymer science, ranging from chemistry and physics of polymers to polymers in materials science and life sciences.