Alexandros Petropoulos, Laurence Charles, Jean-Michel Becht, Michael Schmitt, Jacques Lalevée, Jean-François Lutz
{"title":"光促进寡(三唑酰胺)合成。","authors":"Alexandros Petropoulos, Laurence Charles, Jean-Michel Becht, Michael Schmitt, Jacques Lalevée, Jean-François Lutz","doi":"10.1002/marc.202400759","DOIUrl":null,"url":null,"abstract":"<p><p>A photo-assisted process is explored for improving the synthesis of oligo(triazole amide)s, which are prepared by solid phase synthesis using a repeated cycle of two reactions: amine-carboxylic acid coupling and copper-catalyzed azide-alkyne cycloaddition (CuAAC). The improvement of the second reaction is investigated herein. A catalytic system involving Cu(II)Cl<sub>2</sub>, N,N,N',N″,N″-pentamethyldiethylenetriamine (PMDETA) and a titanocene photoinitiator is explored for reducing the reaction time of CuAAC. This catalyst is first tested on a model reaction involving phenylacetylene and ethyl azidoacetate in DMSO. The kinetics of these model experiments are monitored by <sup>1</sup>H NMR in the presence of different concentrations of the photoinitiator. It is found that 30 mol% of photoinitiator leads to quantitative reactions in only 8 min. These conditions are then applied to the solid phase synthesis of oligo(triazole amide)s, performed on a glycine-loaded Wang resin. The backbone of the oligomers is constructed using 6-heptynoic acid and 1-amino-11-azido-3,6,9-trioxaundecane as submonomers. Due to slow reagent diffusion, the CuAAC step required more time in the solid phase than in solution. Yet, one hour only is necessary to achieve quantitative CuAAC on the resin, which is twice as fast as previously-reported conditions. Using these optimized conditions, oligo(triazole amide)s of different length are prepared.</p>","PeriodicalId":205,"journal":{"name":"Macromolecular Rapid Communications","volume":" ","pages":"e2400759"},"PeriodicalIF":4.2000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Photo-Accelerated Synthesis of Oligo(triazole amide)s.\",\"authors\":\"Alexandros Petropoulos, Laurence Charles, Jean-Michel Becht, Michael Schmitt, Jacques Lalevée, Jean-François Lutz\",\"doi\":\"10.1002/marc.202400759\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A photo-assisted process is explored for improving the synthesis of oligo(triazole amide)s, which are prepared by solid phase synthesis using a repeated cycle of two reactions: amine-carboxylic acid coupling and copper-catalyzed azide-alkyne cycloaddition (CuAAC). The improvement of the second reaction is investigated herein. A catalytic system involving Cu(II)Cl<sub>2</sub>, N,N,N',N″,N″-pentamethyldiethylenetriamine (PMDETA) and a titanocene photoinitiator is explored for reducing the reaction time of CuAAC. This catalyst is first tested on a model reaction involving phenylacetylene and ethyl azidoacetate in DMSO. The kinetics of these model experiments are monitored by <sup>1</sup>H NMR in the presence of different concentrations of the photoinitiator. It is found that 30 mol% of photoinitiator leads to quantitative reactions in only 8 min. These conditions are then applied to the solid phase synthesis of oligo(triazole amide)s, performed on a glycine-loaded Wang resin. The backbone of the oligomers is constructed using 6-heptynoic acid and 1-amino-11-azido-3,6,9-trioxaundecane as submonomers. Due to slow reagent diffusion, the CuAAC step required more time in the solid phase than in solution. Yet, one hour only is necessary to achieve quantitative CuAAC on the resin, which is twice as fast as previously-reported conditions. Using these optimized conditions, oligo(triazole amide)s of different length are prepared.</p>\",\"PeriodicalId\":205,\"journal\":{\"name\":\"Macromolecular Rapid Communications\",\"volume\":\" \",\"pages\":\"e2400759\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Macromolecular Rapid Communications\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/marc.202400759\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular Rapid Communications","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/marc.202400759","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
Photo-Accelerated Synthesis of Oligo(triazole amide)s.
A photo-assisted process is explored for improving the synthesis of oligo(triazole amide)s, which are prepared by solid phase synthesis using a repeated cycle of two reactions: amine-carboxylic acid coupling and copper-catalyzed azide-alkyne cycloaddition (CuAAC). The improvement of the second reaction is investigated herein. A catalytic system involving Cu(II)Cl2, N,N,N',N″,N″-pentamethyldiethylenetriamine (PMDETA) and a titanocene photoinitiator is explored for reducing the reaction time of CuAAC. This catalyst is first tested on a model reaction involving phenylacetylene and ethyl azidoacetate in DMSO. The kinetics of these model experiments are monitored by 1H NMR in the presence of different concentrations of the photoinitiator. It is found that 30 mol% of photoinitiator leads to quantitative reactions in only 8 min. These conditions are then applied to the solid phase synthesis of oligo(triazole amide)s, performed on a glycine-loaded Wang resin. The backbone of the oligomers is constructed using 6-heptynoic acid and 1-amino-11-azido-3,6,9-trioxaundecane as submonomers. Due to slow reagent diffusion, the CuAAC step required more time in the solid phase than in solution. Yet, one hour only is necessary to achieve quantitative CuAAC on the resin, which is twice as fast as previously-reported conditions. Using these optimized conditions, oligo(triazole amide)s of different length are prepared.
期刊介绍:
Macromolecular Rapid Communications publishes original research in polymer science, ranging from chemistry and physics of polymers to polymers in materials science and life sciences.