Christophe Pauly, Lisa Schlichter, Bart Jan Ravoo, Armido Studer
{"title":"声化学氮氧化物介导的聚合反应:利用声化学进行聚合物合成。","authors":"Christophe Pauly, Lisa Schlichter, Bart Jan Ravoo, Armido Studer","doi":"10.1002/marc.202400732","DOIUrl":null,"url":null,"abstract":"<p><p>In polymer science, mechanochemistry is emerging as a powerful tool for materials science and molecular synthesis, offering novel avenues for controlled polymerization and post-synthetic modification. Building upon the previous research, nitroxide-mediated polymerization (NMP) is merged with mechanochemistry through the design of nitroxide-based mechanophore macroinitiators, pioneering the first instance of a sonochemical nitroxide-mediated-type polymerization. As NMP usually requires high temperatures, this study demonstrates that a sonochemical NMP-type process allows polymerization under reduced temperatures down to 55 °C. Moreover, depending on the nature of the employed monomers, gelated networks are obtained, demonstrating the adaptability of the mechanophore system. This study elucidates the potential of mechanochemistry in polymer synthesis, offering insights into manipulating polymerization kinetics and advancing materials science applications.</p>","PeriodicalId":205,"journal":{"name":"Macromolecular Rapid Communications","volume":" ","pages":"e2400732"},"PeriodicalIF":4.2000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sonochemical Nitroxide-Mediated Polymerization: Harnessing Sonochemistry for Polymer Synthesis.\",\"authors\":\"Christophe Pauly, Lisa Schlichter, Bart Jan Ravoo, Armido Studer\",\"doi\":\"10.1002/marc.202400732\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In polymer science, mechanochemistry is emerging as a powerful tool for materials science and molecular synthesis, offering novel avenues for controlled polymerization and post-synthetic modification. Building upon the previous research, nitroxide-mediated polymerization (NMP) is merged with mechanochemistry through the design of nitroxide-based mechanophore macroinitiators, pioneering the first instance of a sonochemical nitroxide-mediated-type polymerization. As NMP usually requires high temperatures, this study demonstrates that a sonochemical NMP-type process allows polymerization under reduced temperatures down to 55 °C. Moreover, depending on the nature of the employed monomers, gelated networks are obtained, demonstrating the adaptability of the mechanophore system. This study elucidates the potential of mechanochemistry in polymer synthesis, offering insights into manipulating polymerization kinetics and advancing materials science applications.</p>\",\"PeriodicalId\":205,\"journal\":{\"name\":\"Macromolecular Rapid Communications\",\"volume\":\" \",\"pages\":\"e2400732\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Macromolecular Rapid Communications\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/marc.202400732\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular Rapid Communications","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/marc.202400732","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
摘要
在聚合物科学领域,机械化学正成为材料科学和分子合成的有力工具,为受控聚合和合成后改性提供了新的途径。在前人研究的基础上,通过设计基于硝基氧化物的机械骨架大引发剂,将硝基氧化物介导聚合(NMP)与机械化学相结合,开创了声化学硝基氧化物介导型聚合的先河。由于 NMP 通常需要较高的温度,这项研究表明,声化学 NMP 型工艺可以在低至 55 °C 的温度下进行聚合。此外,根据所使用单体的性质,还可获得凝胶状网络,这证明了机械发泡体系的适应性。这项研究阐明了机械化学在聚合物合成中的潜力,为操纵聚合动力学和推进材料科学应用提供了见解。
Sonochemical Nitroxide-Mediated Polymerization: Harnessing Sonochemistry for Polymer Synthesis.
In polymer science, mechanochemistry is emerging as a powerful tool for materials science and molecular synthesis, offering novel avenues for controlled polymerization and post-synthetic modification. Building upon the previous research, nitroxide-mediated polymerization (NMP) is merged with mechanochemistry through the design of nitroxide-based mechanophore macroinitiators, pioneering the first instance of a sonochemical nitroxide-mediated-type polymerization. As NMP usually requires high temperatures, this study demonstrates that a sonochemical NMP-type process allows polymerization under reduced temperatures down to 55 °C. Moreover, depending on the nature of the employed monomers, gelated networks are obtained, demonstrating the adaptability of the mechanophore system. This study elucidates the potential of mechanochemistry in polymer synthesis, offering insights into manipulating polymerization kinetics and advancing materials science applications.
期刊介绍:
Macromolecular Rapid Communications publishes original research in polymer science, ranging from chemistry and physics of polymers to polymers in materials science and life sciences.