Douglas H Banning, Audrey M Davenport, Natalie M Lakanen, Jiawei Huang, Carl K Brozek, Darren W Johnson
{"title":"基于 MOF 纳米粒子的 ChemFET 阴离子传感器。","authors":"Douglas H Banning, Audrey M Davenport, Natalie M Lakanen, Jiawei Huang, Carl K Brozek, Darren W Johnson","doi":"10.1002/cplu.202400622","DOIUrl":null,"url":null,"abstract":"<p><p>Nanoparticles of metal-organic frameworks (nanoMOFs) possess the unusual combination of both internal and external surfaces. While internal surfaces have been the focus of fundamental and applications-based MOF studies, the chemistry of the external surfaces remains scarcely understood. Herein we report that specific ion interactions with nanoparticles of Cu(1,2,3-triazolate)<sub>2</sub> (Cu(TA)<sub>2</sub>) resemble the Hofmeister behavior of proteins and the supramolecular chemistry of synthetic macromolecules. Inspired by these anion-selective interactions, we tested the performance of Cu(TA)<sub>2</sub> nanoparticles as chemical field effect transistor (ChemFET) anion sensors. Rather than size-based selectivity, the detection limits of the devices exhibit a Hofmeister trend, with the greatest sensitivity towards anions perchlorate, iodide, and nitrate. These results highlight the importance of the pore-based supramolecular interactions, rather than localized donor-acceptor pairs, in designing MOF-based technologies.</p>","PeriodicalId":148,"journal":{"name":"ChemPlusChem","volume":" ","pages":"e202400622"},"PeriodicalIF":3.0000,"publicationDate":"2024-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ChemFET Anion Sensor Based on MOF Nanoparticles.\",\"authors\":\"Douglas H Banning, Audrey M Davenport, Natalie M Lakanen, Jiawei Huang, Carl K Brozek, Darren W Johnson\",\"doi\":\"10.1002/cplu.202400622\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Nanoparticles of metal-organic frameworks (nanoMOFs) possess the unusual combination of both internal and external surfaces. While internal surfaces have been the focus of fundamental and applications-based MOF studies, the chemistry of the external surfaces remains scarcely understood. Herein we report that specific ion interactions with nanoparticles of Cu(1,2,3-triazolate)<sub>2</sub> (Cu(TA)<sub>2</sub>) resemble the Hofmeister behavior of proteins and the supramolecular chemistry of synthetic macromolecules. Inspired by these anion-selective interactions, we tested the performance of Cu(TA)<sub>2</sub> nanoparticles as chemical field effect transistor (ChemFET) anion sensors. Rather than size-based selectivity, the detection limits of the devices exhibit a Hofmeister trend, with the greatest sensitivity towards anions perchlorate, iodide, and nitrate. These results highlight the importance of the pore-based supramolecular interactions, rather than localized donor-acceptor pairs, in designing MOF-based technologies.</p>\",\"PeriodicalId\":148,\"journal\":{\"name\":\"ChemPlusChem\",\"volume\":\" \",\"pages\":\"e202400622\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemPlusChem\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/cplu.202400622\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemPlusChem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cplu.202400622","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Nanoparticles of metal-organic frameworks (nanoMOFs) possess the unusual combination of both internal and external surfaces. While internal surfaces have been the focus of fundamental and applications-based MOF studies, the chemistry of the external surfaces remains scarcely understood. Herein we report that specific ion interactions with nanoparticles of Cu(1,2,3-triazolate)2 (Cu(TA)2) resemble the Hofmeister behavior of proteins and the supramolecular chemistry of synthetic macromolecules. Inspired by these anion-selective interactions, we tested the performance of Cu(TA)2 nanoparticles as chemical field effect transistor (ChemFET) anion sensors. Rather than size-based selectivity, the detection limits of the devices exhibit a Hofmeister trend, with the greatest sensitivity towards anions perchlorate, iodide, and nitrate. These results highlight the importance of the pore-based supramolecular interactions, rather than localized donor-acceptor pairs, in designing MOF-based technologies.
期刊介绍:
ChemPlusChem is a peer-reviewed, general chemistry journal that brings readers the very best in multidisciplinary research centering on chemistry. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies.
Fully comprehensive in its scope, ChemPlusChem publishes articles covering new results from at least two different aspects (subfields) of chemistry or one of chemistry and one of another scientific discipline (one chemistry topic plus another one, hence the title ChemPlusChem). All suitable submissions undergo balanced peer review by experts in the field to ensure the highest quality, originality, relevance, significance, and validity.