振动光谱分析:过去、现在和未来。

IF 3 4区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY ChemPlusChem Pub Date : 2024-11-11 DOI:10.1002/cplu.202400461
Stewart F Parker
{"title":"振动光谱分析:过去、现在和未来。","authors":"Stewart F Parker","doi":"10.1002/cplu.202400461","DOIUrl":null,"url":null,"abstract":"<p><p>Vibrational spectroscopy can be said to have started with the seminal work of Coblentz in the 1900s, who recorded the first recognisable infrared spectra. Today, vibrational spectroscopy is ubiquitous and there are many ways to measure a vibrational spectrum. But this is usually only the first step, almost always there is a need to assign the resulting spectra: \"what property of the system results in a feature at this energy\"? How this question has been answered has changed over the last century, as our understanding of the fundamental physics of matter has evolved. In this Perspective, I will present my view of how the analysis of vibrational spectra has evolved over time. The article is divided into three sections: past, present and future. The \"past\" section consists of a very brief history of vibrational spectroscopy. The \"present\" is centered around ab initio studies, particularly with density functional theory (DFT) and I will describe how this has become almost routine. For the \"future\", I will extrapolate current trends and also speculate as to what might come next.</p>","PeriodicalId":148,"journal":{"name":"ChemPlusChem","volume":" ","pages":"e202400461"},"PeriodicalIF":3.0000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Analysis of Vibrational Spectra: Past, Present and Future.\",\"authors\":\"Stewart F Parker\",\"doi\":\"10.1002/cplu.202400461\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Vibrational spectroscopy can be said to have started with the seminal work of Coblentz in the 1900s, who recorded the first recognisable infrared spectra. Today, vibrational spectroscopy is ubiquitous and there are many ways to measure a vibrational spectrum. But this is usually only the first step, almost always there is a need to assign the resulting spectra: \\\"what property of the system results in a feature at this energy\\\"? How this question has been answered has changed over the last century, as our understanding of the fundamental physics of matter has evolved. In this Perspective, I will present my view of how the analysis of vibrational spectra has evolved over time. The article is divided into three sections: past, present and future. The \\\"past\\\" section consists of a very brief history of vibrational spectroscopy. The \\\"present\\\" is centered around ab initio studies, particularly with density functional theory (DFT) and I will describe how this has become almost routine. For the \\\"future\\\", I will extrapolate current trends and also speculate as to what might come next.</p>\",\"PeriodicalId\":148,\"journal\":{\"name\":\"ChemPlusChem\",\"volume\":\" \",\"pages\":\"e202400461\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemPlusChem\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/cplu.202400461\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemPlusChem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cplu.202400461","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

振动光谱学可以说始于 20 世纪 Coblentz 的开创性工作,他记录了第一批可识别的红外光谱。如今,振动光谱学已无处不在,测量振动光谱的方法也多种多样。但这通常只是第一步,几乎总是需要对所得到的光谱进行赋值:"系统的什么特性导致了这种能量下的特征"?在过去的一个世纪里,随着我们对物质基本物理的理解不断发展,如何回答这个问题也发生了变化。在这篇《透视》中,我将介绍我对振动光谱分析随时间演变的看法。文章分为三个部分:过去、现在和未来。过去 "部分简要介绍了振动光谱学的历史。现在 "的中心内容是自证研究,特别是密度泛函理论(DFT),我将介绍这种研究是如何几乎成为常规的。至于 "未来",我将推断当前的趋势,并推测下一步可能出现的趋势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Analysis of Vibrational Spectra: Past, Present and Future.

Vibrational spectroscopy can be said to have started with the seminal work of Coblentz in the 1900s, who recorded the first recognisable infrared spectra. Today, vibrational spectroscopy is ubiquitous and there are many ways to measure a vibrational spectrum. But this is usually only the first step, almost always there is a need to assign the resulting spectra: "what property of the system results in a feature at this energy"? How this question has been answered has changed over the last century, as our understanding of the fundamental physics of matter has evolved. In this Perspective, I will present my view of how the analysis of vibrational spectra has evolved over time. The article is divided into three sections: past, present and future. The "past" section consists of a very brief history of vibrational spectroscopy. The "present" is centered around ab initio studies, particularly with density functional theory (DFT) and I will describe how this has become almost routine. For the "future", I will extrapolate current trends and also speculate as to what might come next.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ChemPlusChem
ChemPlusChem CHEMISTRY, MULTIDISCIPLINARY-
CiteScore
5.90
自引率
0.00%
发文量
200
审稿时长
1 months
期刊介绍: ChemPlusChem is a peer-reviewed, general chemistry journal that brings readers the very best in multidisciplinary research centering on chemistry. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies. Fully comprehensive in its scope, ChemPlusChem publishes articles covering new results from at least two different aspects (subfields) of chemistry or one of chemistry and one of another scientific discipline (one chemistry topic plus another one, hence the title ChemPlusChem). All suitable submissions undergo balanced peer review by experts in the field to ensure the highest quality, originality, relevance, significance, and validity.
期刊最新文献
Localized Light-Induced Precipitation of Inorganic Materials. Multicolor, Non-Traditional Intrinsically Luminescent Polymers: Recent Advances. Origin of Regioselectivity Inversion Tuned by Substrate Electronic Properties in Co(III)-Catalyzed Annulation of N-Chlorobenzamide with Alkenes. The Dual-Role of Benzothiadiazole Fluorophores for Enabling Electrofluorochromic and Electrochromic Devices. Modelling Lithium-ion Transport Properties in Sulfoxides and Sulfones with Polarizable Molecular Dynamics and NMR Spectroscopy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1