针对生存数据的脑网络介质贝叶斯路径分析

IF 1.4 4区 数学 Q3 BIOLOGY Biometrics Pub Date : 2024-10-03 DOI:10.1093/biomtc/ujae132
Xinyuan Tian, Fan Li, Li Shen, Denise Esserman, Yize Zhao
{"title":"针对生存数据的脑网络介质贝叶斯路径分析","authors":"Xinyuan Tian, Fan Li, Li Shen, Denise Esserman, Yize Zhao","doi":"10.1093/biomtc/ujae132","DOIUrl":null,"url":null,"abstract":"<p><p>Technological advancements in noninvasive imaging facilitate the construction of whole brain interconnected networks, known as brain connectivity. Existing approaches to analyze brain connectivity frequently disaggregate the entire network into a vector of unique edges or summary measures, leading to a substantial loss of information. Motivated by the need to explore the effect mechanism among genetic exposure, brain connectivity, and time to disease onset with maximum information extraction, we propose a Bayesian approach to model the effect pathway between each of these components while quantifying the mediating role of brain networks. To accommodate the biological architectures of brain connectivity constructed along white matter fiber tracts, we develop a structural model which includes a symmetric matrix-variate accelerated failure time model for disease onset and a symmetric matrix response regression for the network-variate mediator. We further impose within-graph sparsity and between-graph shrinkage to identify informative network configurations and eliminate the interference of noisy components. Simulations are carried out to confirm the advantages of our proposed method over existing alternatives. By applying the proposed method to the landmark Alzheimer's Disease Neuroimaging Initiative study, we obtain neurobiologically plausible insights that may inform future intervention strategies.</p>","PeriodicalId":8930,"journal":{"name":"Biometrics","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11555425/pdf/","citationCount":"0","resultStr":"{\"title\":\"Bayesian pathway analysis over brain network mediators for survival data.\",\"authors\":\"Xinyuan Tian, Fan Li, Li Shen, Denise Esserman, Yize Zhao\",\"doi\":\"10.1093/biomtc/ujae132\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Technological advancements in noninvasive imaging facilitate the construction of whole brain interconnected networks, known as brain connectivity. Existing approaches to analyze brain connectivity frequently disaggregate the entire network into a vector of unique edges or summary measures, leading to a substantial loss of information. Motivated by the need to explore the effect mechanism among genetic exposure, brain connectivity, and time to disease onset with maximum information extraction, we propose a Bayesian approach to model the effect pathway between each of these components while quantifying the mediating role of brain networks. To accommodate the biological architectures of brain connectivity constructed along white matter fiber tracts, we develop a structural model which includes a symmetric matrix-variate accelerated failure time model for disease onset and a symmetric matrix response regression for the network-variate mediator. We further impose within-graph sparsity and between-graph shrinkage to identify informative network configurations and eliminate the interference of noisy components. Simulations are carried out to confirm the advantages of our proposed method over existing alternatives. By applying the proposed method to the landmark Alzheimer's Disease Neuroimaging Initiative study, we obtain neurobiologically plausible insights that may inform future intervention strategies.</p>\",\"PeriodicalId\":8930,\"journal\":{\"name\":\"Biometrics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11555425/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biometrics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/biomtc/ujae132\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biometrics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/biomtc/ujae132","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

无创成像技术的进步促进了全脑互连网络(即大脑连接性)的构建。现有的大脑连通性分析方法经常将整个网络分解为独特的边缘向量或摘要度量,导致大量信息丢失。为了探索遗传暴露、大脑连通性和发病时间之间的效应机制,并最大限度地提取信息,我们提出了一种贝叶斯方法来模拟这些组成部分之间的效应途径,同时量化大脑网络的中介作用。为了适应沿白质纤维束构建的大脑连通性生物结构,我们建立了一个结构模型,其中包括一个对称矩阵变量加速失败时间模型(用于疾病发病)和一个对称矩阵响应回归模型(用于网络变量中介)。我们进一步施加了图内稀疏性和图间收缩,以识别信息网络配置并消除噪声成分的干扰。通过模拟实验,我们证实了我们提出的方法相对于现有方法的优势。通过将所提出的方法应用于具有里程碑意义的阿尔茨海默病神经成像倡议研究,我们获得了神经生物学上合理的见解,这些见解或许能为未来的干预策略提供参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Bayesian pathway analysis over brain network mediators for survival data.

Technological advancements in noninvasive imaging facilitate the construction of whole brain interconnected networks, known as brain connectivity. Existing approaches to analyze brain connectivity frequently disaggregate the entire network into a vector of unique edges or summary measures, leading to a substantial loss of information. Motivated by the need to explore the effect mechanism among genetic exposure, brain connectivity, and time to disease onset with maximum information extraction, we propose a Bayesian approach to model the effect pathway between each of these components while quantifying the mediating role of brain networks. To accommodate the biological architectures of brain connectivity constructed along white matter fiber tracts, we develop a structural model which includes a symmetric matrix-variate accelerated failure time model for disease onset and a symmetric matrix response regression for the network-variate mediator. We further impose within-graph sparsity and between-graph shrinkage to identify informative network configurations and eliminate the interference of noisy components. Simulations are carried out to confirm the advantages of our proposed method over existing alternatives. By applying the proposed method to the landmark Alzheimer's Disease Neuroimaging Initiative study, we obtain neurobiologically plausible insights that may inform future intervention strategies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biometrics
Biometrics 生物-生物学
CiteScore
2.70
自引率
5.30%
发文量
178
审稿时长
4-8 weeks
期刊介绍: The International Biometric Society is an international society promoting the development and application of statistical and mathematical theory and methods in the biosciences, including agriculture, biomedical science and public health, ecology, environmental sciences, forestry, and allied disciplines. The Society welcomes as members statisticians, mathematicians, biological scientists, and others devoted to interdisciplinary efforts in advancing the collection and interpretation of information in the biosciences. The Society sponsors the biennial International Biometric Conference, held in sites throughout the world; through its National Groups and Regions, it also Society sponsors regional and local meetings.
期刊最新文献
Bayesian pathway analysis over brain network mediators for survival data. Robust model averaging approach by Mallows-type criterion. Bayesian inference for multivariate probit model with latent envelope. Absolute risk from double nested case-control designs: cause-specific proportional hazards models with and without augmented estimating equations. Nonparametric receiver operating characteristic curve analysis with an imperfect gold standard.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1