{"title":"无偏见的噬菌体展示筛选确定了隐藏的疟疾疫苗靶点。","authors":"Marcelo Jacobs-Lorena, Sung-Jae Cha","doi":"10.1080/22221751.2024.2429617","DOIUrl":null,"url":null,"abstract":"<p><p>Malaria is among the deadliest infectious diseases. Over 200 million annual clinical malaria cases are reported and more than half a million people, mostly children, die every year. The most advanced RTS,S/AS01 vaccine based on the <i>P. falciparum</i> circumsporozoite protein (CSP), targets sporozoite liver infection but achieved modest efficacy. To reduce malaria death, novel malaria vaccine development is a high priority. Most malaria vaccine candidates target three infection steps: sporozoite liver infection, merozoite red blood cell (RBC) infection, and mosquito midgut infection. However, only few malaria vaccine candidates target specific parasite-host cell interactions. Our group has implemented the phage peptide-display approach to discover new parasite ligands and host cell receptors. Here we summarize our findings and discuss their potential for the development of novel vaccines.</p>","PeriodicalId":11602,"journal":{"name":"Emerging Microbes & Infections","volume":" ","pages":"2429617"},"PeriodicalIF":8.4000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11587725/pdf/","citationCount":"0","resultStr":"{\"title\":\"Unbiased phage display screening identifies hidden malaria vaccine targets.\",\"authors\":\"Marcelo Jacobs-Lorena, Sung-Jae Cha\",\"doi\":\"10.1080/22221751.2024.2429617\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Malaria is among the deadliest infectious diseases. Over 200 million annual clinical malaria cases are reported and more than half a million people, mostly children, die every year. The most advanced RTS,S/AS01 vaccine based on the <i>P. falciparum</i> circumsporozoite protein (CSP), targets sporozoite liver infection but achieved modest efficacy. To reduce malaria death, novel malaria vaccine development is a high priority. Most malaria vaccine candidates target three infection steps: sporozoite liver infection, merozoite red blood cell (RBC) infection, and mosquito midgut infection. However, only few malaria vaccine candidates target specific parasite-host cell interactions. Our group has implemented the phage peptide-display approach to discover new parasite ligands and host cell receptors. Here we summarize our findings and discuss their potential for the development of novel vaccines.</p>\",\"PeriodicalId\":11602,\"journal\":{\"name\":\"Emerging Microbes & Infections\",\"volume\":\" \",\"pages\":\"2429617\"},\"PeriodicalIF\":8.4000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11587725/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Emerging Microbes & Infections\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/22221751.2024.2429617\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/22 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Emerging Microbes & Infections","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/22221751.2024.2429617","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/22 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
Malaria is among the deadliest infectious diseases. Over 200 million annual clinical malaria cases are reported and more than half a million people, mostly children, die every year. The most advanced RTS,S/AS01 vaccine based on the P. falciparum circumsporozoite protein (CSP), targets sporozoite liver infection but achieved modest efficacy. To reduce malaria death, novel malaria vaccine development is a high priority. Most malaria vaccine candidates target three infection steps: sporozoite liver infection, merozoite red blood cell (RBC) infection, and mosquito midgut infection. However, only few malaria vaccine candidates target specific parasite-host cell interactions. Our group has implemented the phage peptide-display approach to discover new parasite ligands and host cell receptors. Here we summarize our findings and discuss their potential for the development of novel vaccines.
期刊介绍:
Emerging Microbes & Infections is a peer-reviewed, open-access journal dedicated to publishing research at the intersection of emerging immunology and microbiology viruses.
The journal's mission is to share information on microbes and infections, particularly those gaining significance in both biological and clinical realms due to increased pathogenic frequency. Emerging Microbes & Infections is committed to bridging the scientific gap between developed and developing countries.
This journal addresses topics of critical biological and clinical importance, including but not limited to:
- Epidemic surveillance
- Clinical manifestations
- Diagnosis and management
- Cellular and molecular pathogenesis
- Innate and acquired immune responses between emerging microbes and their hosts
- Drug discovery
- Vaccine development research
Emerging Microbes & Infections invites submissions of original research articles, review articles, letters, and commentaries, fostering a platform for the dissemination of impactful research in the field.