秀丽隐杆线虫(Caenorhabditis elegans)中出现的畸形幼虫破坏了宿主与微生物组相互作用的连续性。

IF 3.5 3区 生物学 Q2 MICROBIOLOGY FEMS microbiology ecology Pub Date : 2024-11-08 DOI:10.1093/femsec/fiae149
Rahul Bodkhe, Kenneth Trang, Sabrina Hammond, Da Kyung Jung, Michael Shapira
{"title":"秀丽隐杆线虫(Caenorhabditis elegans)中出现的畸形幼虫破坏了宿主与微生物组相互作用的连续性。","authors":"Rahul Bodkhe, Kenneth Trang, Sabrina Hammond, Da Kyung Jung, Michael Shapira","doi":"10.1093/femsec/fiae149","DOIUrl":null,"url":null,"abstract":"<p><p>Nematodes are common in most terrestrial environments, where populations are often known to undergo cycles of boom and bust. Useful in such scenarios, nematodes present developmental programs of diapause, giving rise to stress-resistant larvae and enabling dispersal in search of new resources. Best studied in Caenorhabditis elegans, stress resistant dauer larvae emerge under adverse conditions, primarily starvation, and migrate to new niches where they can resume development and reproduce. C. elegans is a bacterivore but has been shown to harbor a persistent and characteristic gut microbiome. While much is known about the gut microbiome of reproducing C. elegans, what dauers harbor is yet unknown. This is of interest, as dauers are those that would enable transmission of microbes between nematode generations and geographical sites, maintaining continuity of host-microbe interactions. Using culture-dependent as well as sequencing-based approaches we examined the gut microbiomes of dauers emerging following population growth on ten different natural-like microbially diverse environments as well as on two defined communities of known gut commensals and found that dauers were largely devoid of gut bacteria. These results suggest that host gut-microbiome interactions in C. elegans are not continuous across successive generations and may reduce the likelihood of long-term worm-microbe coevolution.</p>","PeriodicalId":12312,"journal":{"name":"FEMS microbiology ecology","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Emergence of dauer larvae in Caenorhabditis elegans disrupts continuity of host-microbiome interactions.\",\"authors\":\"Rahul Bodkhe, Kenneth Trang, Sabrina Hammond, Da Kyung Jung, Michael Shapira\",\"doi\":\"10.1093/femsec/fiae149\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Nematodes are common in most terrestrial environments, where populations are often known to undergo cycles of boom and bust. Useful in such scenarios, nematodes present developmental programs of diapause, giving rise to stress-resistant larvae and enabling dispersal in search of new resources. Best studied in Caenorhabditis elegans, stress resistant dauer larvae emerge under adverse conditions, primarily starvation, and migrate to new niches where they can resume development and reproduce. C. elegans is a bacterivore but has been shown to harbor a persistent and characteristic gut microbiome. While much is known about the gut microbiome of reproducing C. elegans, what dauers harbor is yet unknown. This is of interest, as dauers are those that would enable transmission of microbes between nematode generations and geographical sites, maintaining continuity of host-microbe interactions. Using culture-dependent as well as sequencing-based approaches we examined the gut microbiomes of dauers emerging following population growth on ten different natural-like microbially diverse environments as well as on two defined communities of known gut commensals and found that dauers were largely devoid of gut bacteria. These results suggest that host gut-microbiome interactions in C. elegans are not continuous across successive generations and may reduce the likelihood of long-term worm-microbe coevolution.</p>\",\"PeriodicalId\":12312,\"journal\":{\"name\":\"FEMS microbiology ecology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"FEMS microbiology ecology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/femsec/fiae149\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"FEMS microbiology ecology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/femsec/fiae149","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

线虫在大多数陆地环境中都很常见,众所周知,陆地环境中的种群通常会经历繁荣和萧条的周期。在这种情况下,线虫的休眠发育程序非常有用,它能产生抗应激幼虫,并能分散寻找新资源。对秀丽隐杆线虫(Caenorhabditis elegans)的研究最为深入,抗应激的滞育幼虫在不利条件下(主要是饥饿)萌发,并迁移到可以恢复发育和繁殖的新环境中。秀丽隐杆线虫是一种食菌动物,但其肠道微生物群具有持久性和特征性。虽然人们对正在繁殖的秀丽隐杆线虫的肠道微生物组了解得很多,但对 "道尔 "所蕴藏的微生物组还不得而知。这一点很有意义,因为 "道尔 "能使微生物在线虫世代和地理位置之间传播,保持宿主与微生物相互作用的连续性。我们利用依赖培养和基于测序的方法,研究了在十种不同的类自然微生物多样性环境以及两种已知肠道共生动物的确定群落中,随着种群增长而出现的道氏线虫的肠道微生物组,发现道氏线虫基本上没有肠道细菌。这些结果表明,秀丽隐杆线虫宿主肠道微生物组之间的相互作用在连续世代中并不连续,这可能会降低蠕虫与微生物长期共同进化的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Emergence of dauer larvae in Caenorhabditis elegans disrupts continuity of host-microbiome interactions.

Nematodes are common in most terrestrial environments, where populations are often known to undergo cycles of boom and bust. Useful in such scenarios, nematodes present developmental programs of diapause, giving rise to stress-resistant larvae and enabling dispersal in search of new resources. Best studied in Caenorhabditis elegans, stress resistant dauer larvae emerge under adverse conditions, primarily starvation, and migrate to new niches where they can resume development and reproduce. C. elegans is a bacterivore but has been shown to harbor a persistent and characteristic gut microbiome. While much is known about the gut microbiome of reproducing C. elegans, what dauers harbor is yet unknown. This is of interest, as dauers are those that would enable transmission of microbes between nematode generations and geographical sites, maintaining continuity of host-microbe interactions. Using culture-dependent as well as sequencing-based approaches we examined the gut microbiomes of dauers emerging following population growth on ten different natural-like microbially diverse environments as well as on two defined communities of known gut commensals and found that dauers were largely devoid of gut bacteria. These results suggest that host gut-microbiome interactions in C. elegans are not continuous across successive generations and may reduce the likelihood of long-term worm-microbe coevolution.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
FEMS microbiology ecology
FEMS microbiology ecology 生物-微生物学
CiteScore
7.50
自引率
2.40%
发文量
132
审稿时长
3 months
期刊介绍: FEMS Microbiology Ecology aims to ensure efficient publication of high-quality papers that are original and provide a significant contribution to the understanding of microbial ecology. The journal contains Research Articles and MiniReviews on fundamental aspects of the ecology of microorganisms in natural soil, aquatic and atmospheric habitats, including extreme environments, and in artificial or managed environments. Research papers on pure cultures and in the areas of plant pathology and medical, food or veterinary microbiology will be published where they provide valuable generic information on microbial ecology. Papers can deal with culturable and non-culturable forms of any type of microorganism: bacteria, archaea, filamentous fungi, yeasts, protozoa, cyanobacteria, algae or viruses. In addition, the journal will publish Perspectives, Current Opinion and Controversy Articles, Commentaries and Letters to the Editor on topical issues in microbial ecology. - Application of ecological theory to microbial ecology - Interactions and signalling between microorganisms and with plants and animals - Interactions between microorganisms and their physicochemical enviornment - Microbial aspects of biogeochemical cycles and processes - Microbial community ecology - Phylogenetic and functional diversity of microbial communities - Evolutionary biology of microorganisms
期刊最新文献
A respiro-fermentative strategy to survive nanoxia in Acidobacterium capsulatum. Diversity and networking of uni-cyanobacterial cultures and associated heterotrophic bacteria from the benthic microbial mat of a desert hydrothermal spring. Microbiome analysis of monarch butterflies reveals effects of development and diet. Environmental factors and potential probiotic lineages shape the active prokaryotic communities associated with healthy Penaeus stylirostris larvae and their rearing water. Microfluidics for studying the deep underground biosphere: from applications to fundamentals.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1