炎症串扰损害吞噬受体,加重小鼠克隆造血的动脉粥样硬化。

IF 13.3 1区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL Journal of Clinical Investigation Pub Date : 2024-11-12 DOI:10.1172/JCI182939
Wenli Liu, Brian D Hardaway, Eunyoung Kim, Jessica Pauli, Justus Leonard Wettich, Mustafa Yalcinkaya, Cheng-Chieh Hsu, Tong Xiao, Muredach P Reilly, Ira Tabas, Lars Maegdefessel, Kai Schlepckow, Haass Christian, Nan Wang, Alan R Tall
{"title":"炎症串扰损害吞噬受体,加重小鼠克隆造血的动脉粥样硬化。","authors":"Wenli Liu, Brian D Hardaway, Eunyoung Kim, Jessica Pauli, Justus Leonard Wettich, Mustafa Yalcinkaya, Cheng-Chieh Hsu, Tong Xiao, Muredach P Reilly, Ira Tabas, Lars Maegdefessel, Kai Schlepckow, Haass Christian, Nan Wang, Alan R Tall","doi":"10.1172/JCI182939","DOIUrl":null,"url":null,"abstract":"<p><p>Clonal hematopoiesis (CH) increases inflammasome-linked atherosclerosis but the mechanisms by which CH mutant cells transmit inflammatory signals to non-mutant cells are largely unknown. To address this question we transplanted 1.5% Jak2VF bone marrow (BM) cells with 98.5% WT BM cells into hyperlipidemic Ldlr-/- mice. Low allele burden (LAB) mice showed accelerated atherosclerosis with increased features of plaque instability, decreased levels of macrophage phagocytic receptors MERTK and TREM2, and increased neutrophil extracellular traps (NETs). These changes were reversed when Jak2VF BM was transplanted with Il1r1-/- BM. LAB mice with non-cleavable MERTK in WT BM showed improvements in necrotic core and fibrous cap formation and reduced NETs. An agonistic TREM2 antibody (4D9) markedly increased fibrous caps in both control and LAB mice eliminating the difference between groups. Mechanistically, 4D9 increased TREM2+PDGFB+ macrophages and PDGF receptor-α positive fibroblast-like cells in the cap region. TREM2 and PDGFB mRNA levels were positively correlated in human carotid plaques and co-expressed in macrophages. In summary, low frequency Jak2VF mutations promote atherosclerosis via IL-1 signaling from Jak2VF to WT macrophages and neutrophils promoting cleavage of phagocytic receptors and features of plaque instability. Therapeutic approaches that stabilize MERTK or TREM2 could promote plaque stabilization especially in CH- and inflammasome-driven atherosclerosis.</p>","PeriodicalId":15469,"journal":{"name":"Journal of Clinical Investigation","volume":" ","pages":""},"PeriodicalIF":13.3000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inflammatory crosstalk impairs phagocytic receptors and aggravates atherosclerosis in clonal hematopoiesis in mice.\",\"authors\":\"Wenli Liu, Brian D Hardaway, Eunyoung Kim, Jessica Pauli, Justus Leonard Wettich, Mustafa Yalcinkaya, Cheng-Chieh Hsu, Tong Xiao, Muredach P Reilly, Ira Tabas, Lars Maegdefessel, Kai Schlepckow, Haass Christian, Nan Wang, Alan R Tall\",\"doi\":\"10.1172/JCI182939\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Clonal hematopoiesis (CH) increases inflammasome-linked atherosclerosis but the mechanisms by which CH mutant cells transmit inflammatory signals to non-mutant cells are largely unknown. To address this question we transplanted 1.5% Jak2VF bone marrow (BM) cells with 98.5% WT BM cells into hyperlipidemic Ldlr-/- mice. Low allele burden (LAB) mice showed accelerated atherosclerosis with increased features of plaque instability, decreased levels of macrophage phagocytic receptors MERTK and TREM2, and increased neutrophil extracellular traps (NETs). These changes were reversed when Jak2VF BM was transplanted with Il1r1-/- BM. LAB mice with non-cleavable MERTK in WT BM showed improvements in necrotic core and fibrous cap formation and reduced NETs. An agonistic TREM2 antibody (4D9) markedly increased fibrous caps in both control and LAB mice eliminating the difference between groups. Mechanistically, 4D9 increased TREM2+PDGFB+ macrophages and PDGF receptor-α positive fibroblast-like cells in the cap region. TREM2 and PDGFB mRNA levels were positively correlated in human carotid plaques and co-expressed in macrophages. In summary, low frequency Jak2VF mutations promote atherosclerosis via IL-1 signaling from Jak2VF to WT macrophages and neutrophils promoting cleavage of phagocytic receptors and features of plaque instability. Therapeutic approaches that stabilize MERTK or TREM2 could promote plaque stabilization especially in CH- and inflammasome-driven atherosclerosis.</p>\",\"PeriodicalId\":15469,\"journal\":{\"name\":\"Journal of Clinical Investigation\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":13.3000,\"publicationDate\":\"2024-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Clinical Investigation\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1172/JCI182939\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Clinical Investigation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1172/JCI182939","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

克隆造血(CH)会增加与炎症体相关的动脉粥样硬化,但CH突变细胞向非突变细胞传递炎症信号的机制在很大程度上是未知的。为了解决这个问题,我们将1.5%的Jak2VF骨髓(BM)细胞和98.5%的WT骨髓(BM)细胞移植到高脂血症Ldlr-/-小鼠体内。低等位基因负荷(LAB)小鼠表现出动脉粥样硬化加速,斑块不稳定性增加,巨噬细胞吞噬受体 MERTK 和 TREM2 水平下降,中性粒细胞胞外陷阱(NET)增加。用 Il1r1-/- BM 移植 Jak2VF BM 可逆转这些变化。WT BM 中的 MERTK 不可清除的 LAB 小鼠在坏死核心和纤维帽形成方面有所改善,NET 也有所减少。激动剂 TREM2 抗体(4D9)显著增加了对照组和 LAB 小鼠的纤维帽,消除了组间差异。从机制上讲,4D9 增加了纤维帽区域的 TREM2+PDGFB+ 巨噬细胞和 PDGF 受体-α 阳性成纤维细胞。在人类颈动脉斑块中,TREM2 和 PDGFB mRNA 水平呈正相关,并在巨噬细胞中共同表达。总之,低频 Jak2VF 突变通过从 Jak2VF 向 WT 巨噬细胞和中性粒细胞传递 IL-1 信号,促进吞噬受体的裂解和斑块的不稳定性特征,从而促进动脉粥样硬化。稳定MERTK或TREM2的治疗方法可促进斑块稳定,尤其是在CH和炎性体驱动的动脉粥样硬化中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Inflammatory crosstalk impairs phagocytic receptors and aggravates atherosclerosis in clonal hematopoiesis in mice.

Clonal hematopoiesis (CH) increases inflammasome-linked atherosclerosis but the mechanisms by which CH mutant cells transmit inflammatory signals to non-mutant cells are largely unknown. To address this question we transplanted 1.5% Jak2VF bone marrow (BM) cells with 98.5% WT BM cells into hyperlipidemic Ldlr-/- mice. Low allele burden (LAB) mice showed accelerated atherosclerosis with increased features of plaque instability, decreased levels of macrophage phagocytic receptors MERTK and TREM2, and increased neutrophil extracellular traps (NETs). These changes were reversed when Jak2VF BM was transplanted with Il1r1-/- BM. LAB mice with non-cleavable MERTK in WT BM showed improvements in necrotic core and fibrous cap formation and reduced NETs. An agonistic TREM2 antibody (4D9) markedly increased fibrous caps in both control and LAB mice eliminating the difference between groups. Mechanistically, 4D9 increased TREM2+PDGFB+ macrophages and PDGF receptor-α positive fibroblast-like cells in the cap region. TREM2 and PDGFB mRNA levels were positively correlated in human carotid plaques and co-expressed in macrophages. In summary, low frequency Jak2VF mutations promote atherosclerosis via IL-1 signaling from Jak2VF to WT macrophages and neutrophils promoting cleavage of phagocytic receptors and features of plaque instability. Therapeutic approaches that stabilize MERTK or TREM2 could promote plaque stabilization especially in CH- and inflammasome-driven atherosclerosis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Clinical Investigation
Journal of Clinical Investigation 医学-医学:研究与实验
CiteScore
24.50
自引率
1.30%
发文量
1034
审稿时长
2 months
期刊介绍: The Journal of Clinical Investigation, established in 1924 by the ASCI, is a prestigious publication that focuses on breakthroughs in basic and clinical biomedical science, with the goal of advancing the field of medicine. With an impressive Impact Factor of 15.9 in 2022, it is recognized as one of the leading journals in the "Medicine, Research & Experimental" category of the Web of Science. The journal attracts a diverse readership from various medical disciplines and sectors. It publishes a wide range of research articles encompassing all biomedical specialties, including Autoimmunity, Gastroenterology, Immunology, Metabolism, Nephrology, Neuroscience, Oncology, Pulmonology, Vascular Biology, and many others. The Editorial Board consists of esteemed academic editors who possess extensive expertise in their respective fields. They are actively involved in research, ensuring the journal's high standards of publication and scientific rigor.
期刊最新文献
Mechanosensitive channels TMEM63A and TMEM63B mediate lung inflation-induced surfactant secretion. Ferroptosis of select skin epithelial cells initiates and maintains chronic systemic immune-mediated psoriatic disease. Mutations in unfolded protein response regulator ATF6 cause hearing and vision loss syndrome. An inducible RIPK3-driven necroptotic system enhances cancer cell-based immunotherapy and ensures safety. G-CSF resistance of ELANE mutant neutropenia depends on SERF1 containing truncated neutrophil elastase aggregates.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1