小型低成本磁传感器在地球物理勘探中的适用性。

IF 3.4 3区 综合性期刊 Q2 CHEMISTRY, ANALYTICAL Sensors Pub Date : 2024-10-31 DOI:10.3390/s24217047
Filippo Accomando, Giovanni Florio
{"title":"小型低成本磁传感器在地球物理勘探中的适用性。","authors":"Filippo Accomando, Giovanni Florio","doi":"10.3390/s24217047","DOIUrl":null,"url":null,"abstract":"<p><p>In the past few decades, there has been a notable technological advancement in geophysical sensors. In the case of magnetometry, several sensors were used, having the common feature of being miniaturized and lightweight, thus idoneous to be carried by UAVs in drone-borne magnetometric surveys. A common feature is that their sensitivity ranges from 0.1 to about 200 nT, thus not comparable to that of optically pumped, standard fluxgate or even proton magnetometers. However, their low cost, volume and weight remain very interesting features of these sensors. In fact, such sensors have the common feature of being very inexpensive, so new ways of making surveys using many of these sensors could be devised, in addition to the possibility, even with limited resources, of creating gradiometers by combining two or more of them. In this paper, we explore the range of applicability of small tri-axial magnetometers commonly used for attitude determination in several devices. We compare the results of surveys performed with standard professional geophysical instruments with those obtained using these sensors and find that in the presence of strongly magnetized sources, they succeeded in identifying the main anomalies.</p>","PeriodicalId":21698,"journal":{"name":"Sensors","volume":"24 21","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11548162/pdf/","citationCount":"0","resultStr":"{\"title\":\"Applicability of Small and Low-Cost Magnetic Sensors to Geophysical Exploration.\",\"authors\":\"Filippo Accomando, Giovanni Florio\",\"doi\":\"10.3390/s24217047\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In the past few decades, there has been a notable technological advancement in geophysical sensors. In the case of magnetometry, several sensors were used, having the common feature of being miniaturized and lightweight, thus idoneous to be carried by UAVs in drone-borne magnetometric surveys. A common feature is that their sensitivity ranges from 0.1 to about 200 nT, thus not comparable to that of optically pumped, standard fluxgate or even proton magnetometers. However, their low cost, volume and weight remain very interesting features of these sensors. In fact, such sensors have the common feature of being very inexpensive, so new ways of making surveys using many of these sensors could be devised, in addition to the possibility, even with limited resources, of creating gradiometers by combining two or more of them. In this paper, we explore the range of applicability of small tri-axial magnetometers commonly used for attitude determination in several devices. We compare the results of surveys performed with standard professional geophysical instruments with those obtained using these sensors and find that in the presence of strongly magnetized sources, they succeeded in identifying the main anomalies.</p>\",\"PeriodicalId\":21698,\"journal\":{\"name\":\"Sensors\",\"volume\":\"24 21\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11548162/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sensors\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.3390/s24217047\",\"RegionNum\":3,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/s24217047","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

在过去的几十年里,地球物理传感器取得了显著的技术进步。在磁力测量方面,使用了几种传感器,它们的共同特点是小型化和轻量化,因此适合由无人机携带进行无人机载磁力测量。它们的一个共同特点是灵敏度在 0.1 到 200 nT 之间,因此无法与光泵、标准磁通门甚至质子磁力计相比。不过,这些传感器成本低、体积小、重量轻,仍然是它们非常吸引人的特点。事实上,此类传感器的共同特点是非常便宜,因此可以设计出使用许多此类传感器进行勘测的新方法,此外,即使资源有限,也有可能通过组合两个或多个此类传感器来制造梯度仪。在本文中,我们探讨了一些设备中常用于姿态测定的小型三轴磁力计的适用范围。我们将使用标准专业地球物理仪器进行的勘测结果与使用这些传感器获得的结果进行了比较,发现在存在强磁化源的情况下,它们能够成功地确定主要异常点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Applicability of Small and Low-Cost Magnetic Sensors to Geophysical Exploration.

In the past few decades, there has been a notable technological advancement in geophysical sensors. In the case of magnetometry, several sensors were used, having the common feature of being miniaturized and lightweight, thus idoneous to be carried by UAVs in drone-borne magnetometric surveys. A common feature is that their sensitivity ranges from 0.1 to about 200 nT, thus not comparable to that of optically pumped, standard fluxgate or even proton magnetometers. However, their low cost, volume and weight remain very interesting features of these sensors. In fact, such sensors have the common feature of being very inexpensive, so new ways of making surveys using many of these sensors could be devised, in addition to the possibility, even with limited resources, of creating gradiometers by combining two or more of them. In this paper, we explore the range of applicability of small tri-axial magnetometers commonly used for attitude determination in several devices. We compare the results of surveys performed with standard professional geophysical instruments with those obtained using these sensors and find that in the presence of strongly magnetized sources, they succeeded in identifying the main anomalies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Sensors
Sensors 工程技术-电化学
CiteScore
7.30
自引率
12.80%
发文量
8430
审稿时长
1.7 months
期刊介绍: Sensors (ISSN 1424-8220) provides an advanced forum for the science and technology of sensors and biosensors. It publishes reviews (including comprehensive reviews on the complete sensors products), regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
期刊最新文献
Deep Learning Model Compression and Hardware Acceleration for High-Performance Foreign Material Detection on Poultry Meat Using NIR Hyperspectral Imaging. A 60 GHz Class-C Wide Tuning-Range Two-Core VCO Utilizing a Gain-Boosting Frequency Doubling Technique and an Adaptive Bias Scheme for Robust Startup. A Modified Preassigned Finite-Time Control Scheme for Spacecraft Large-Angle Attitude Maneuvering and Tracking. A Prestressed Concrete Cylinder Pipe Broken Wire Detection Algorithm Based on Improved YOLOv5. A PUF-Based Secure Authentication and Key Agreement Scheme for the Internet of Drones.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1