Hang Li, Yunpeng Wang, Weihua Qiao, Ze Zhu, Zhiyuan Wang, Yunlu Tian, Shijia Liu, Jianmin Wan, Linglong Liu
{"title":"鉴定调控水稻(Oryza sativa L.)谷粒形状和重量的新基因座 qGW12/OsPUB23。","authors":"Hang Li, Yunpeng Wang, Weihua Qiao, Ze Zhu, Zhiyuan Wang, Yunlu Tian, Shijia Liu, Jianmin Wan, Linglong Liu","doi":"10.1007/s00122-024-04776-w","DOIUrl":null,"url":null,"abstract":"<p><strong>Key message: </strong>Key message A major quantitative trait locus (qGW12) for grain shape and weight has been isolated in rice, corresponding to LOC_Os12g17900/OsPUB23, and its encoded protein interacts with OsMADS1. Grain shape in rice is an important trait that influences both yield and quality. The primary determinants of grain shape are quantitative trait loci (QTLs) inherited from natural variation in crops. In recent years, much attention has been paid to the molecular role of QTLs in regulating grain shape and weight. In this study, we report the cloning and characterization of qGW12, a major QTL regulating grain shape and weight in rice, using a series of chromosome fragment substitution lines (CSSLs) derived from Oryza sativa indica cultivar 9311 (acceptor) and Oryza rufipogon Griff (donor). One CSSL line, Q187, harboring the introgression of qGW12, exhibited a significant decrease in grain-shape-related traits (including grain length and width) and thousand-grain weight compared to the cultivar 9311. Subsequent backcrossing of Q187 with 9311 resulted in the generation of secondary segregating populations, which were used to fine-map qGW12 to a 24-kb region between markers Seq-44 and Seq-48. Our data indicated that qGW12 encodes a previously unreported U-box type E3 ubiquitin ligase, designated OsPUB23, which exhibited E3 ubiquitin ligase activity. Overexpression of OsPUB23 in rice resulted in higher plant yield than the wild type due to an increase in grain size and weight. Conversely, loss of OsPUB23 function resulted in the opposite tendency. Yeast two-hybrid screening and split luciferase complementation assays revealed that OsPUB23 interacts with OsMADS1. The functional characterization of OsPUB23 provides new genetic resources for improving of grain yield and quality in crops.</p>","PeriodicalId":22955,"journal":{"name":"Theoretical and Applied Genetics","volume":"137 12","pages":"267"},"PeriodicalIF":4.4000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identification of a novel locus qGW12/OsPUB23 regulating grain shape and weight in rice (Oryza sativa L.).\",\"authors\":\"Hang Li, Yunpeng Wang, Weihua Qiao, Ze Zhu, Zhiyuan Wang, Yunlu Tian, Shijia Liu, Jianmin Wan, Linglong Liu\",\"doi\":\"10.1007/s00122-024-04776-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Key message: </strong>Key message A major quantitative trait locus (qGW12) for grain shape and weight has been isolated in rice, corresponding to LOC_Os12g17900/OsPUB23, and its encoded protein interacts with OsMADS1. Grain shape in rice is an important trait that influences both yield and quality. The primary determinants of grain shape are quantitative trait loci (QTLs) inherited from natural variation in crops. In recent years, much attention has been paid to the molecular role of QTLs in regulating grain shape and weight. In this study, we report the cloning and characterization of qGW12, a major QTL regulating grain shape and weight in rice, using a series of chromosome fragment substitution lines (CSSLs) derived from Oryza sativa indica cultivar 9311 (acceptor) and Oryza rufipogon Griff (donor). One CSSL line, Q187, harboring the introgression of qGW12, exhibited a significant decrease in grain-shape-related traits (including grain length and width) and thousand-grain weight compared to the cultivar 9311. Subsequent backcrossing of Q187 with 9311 resulted in the generation of secondary segregating populations, which were used to fine-map qGW12 to a 24-kb region between markers Seq-44 and Seq-48. Our data indicated that qGW12 encodes a previously unreported U-box type E3 ubiquitin ligase, designated OsPUB23, which exhibited E3 ubiquitin ligase activity. Overexpression of OsPUB23 in rice resulted in higher plant yield than the wild type due to an increase in grain size and weight. Conversely, loss of OsPUB23 function resulted in the opposite tendency. Yeast two-hybrid screening and split luciferase complementation assays revealed that OsPUB23 interacts with OsMADS1. The functional characterization of OsPUB23 provides new genetic resources for improving of grain yield and quality in crops.</p>\",\"PeriodicalId\":22955,\"journal\":{\"name\":\"Theoretical and Applied Genetics\",\"volume\":\"137 12\",\"pages\":\"267\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theoretical and Applied Genetics\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1007/s00122-024-04776-w\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Applied Genetics","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s00122-024-04776-w","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
Identification of a novel locus qGW12/OsPUB23 regulating grain shape and weight in rice (Oryza sativa L.).
Key message: Key message A major quantitative trait locus (qGW12) for grain shape and weight has been isolated in rice, corresponding to LOC_Os12g17900/OsPUB23, and its encoded protein interacts with OsMADS1. Grain shape in rice is an important trait that influences both yield and quality. The primary determinants of grain shape are quantitative trait loci (QTLs) inherited from natural variation in crops. In recent years, much attention has been paid to the molecular role of QTLs in regulating grain shape and weight. In this study, we report the cloning and characterization of qGW12, a major QTL regulating grain shape and weight in rice, using a series of chromosome fragment substitution lines (CSSLs) derived from Oryza sativa indica cultivar 9311 (acceptor) and Oryza rufipogon Griff (donor). One CSSL line, Q187, harboring the introgression of qGW12, exhibited a significant decrease in grain-shape-related traits (including grain length and width) and thousand-grain weight compared to the cultivar 9311. Subsequent backcrossing of Q187 with 9311 resulted in the generation of secondary segregating populations, which were used to fine-map qGW12 to a 24-kb region between markers Seq-44 and Seq-48. Our data indicated that qGW12 encodes a previously unreported U-box type E3 ubiquitin ligase, designated OsPUB23, which exhibited E3 ubiquitin ligase activity. Overexpression of OsPUB23 in rice resulted in higher plant yield than the wild type due to an increase in grain size and weight. Conversely, loss of OsPUB23 function resulted in the opposite tendency. Yeast two-hybrid screening and split luciferase complementation assays revealed that OsPUB23 interacts with OsMADS1. The functional characterization of OsPUB23 provides new genetic resources for improving of grain yield and quality in crops.
期刊介绍:
Theoretical and Applied Genetics publishes original research and review articles in all key areas of modern plant genetics, plant genomics and plant biotechnology. All work needs to have a clear genetic component and significant impact on plant breeding. Theoretical considerations are only accepted in combination with new experimental data and/or if they indicate a relevant application in plant genetics or breeding. Emphasizing the practical, the journal focuses on research into leading crop plants and articles presenting innovative approaches.