Tripti Jain, Asit Jain, Surender Lal Goswami, Bhaskar Roy, Sachinandan De, Rakesh Kumar, Tirtha Kumar Datta
{"title":"水牛卵母细胞体外成熟过程中生长分化因子 9 的表达与核受体和碱性螺旋-环-螺旋转录因子的关系。","authors":"Tripti Jain, Asit Jain, Surender Lal Goswami, Bhaskar Roy, Sachinandan De, Rakesh Kumar, Tirtha Kumar Datta","doi":"10.1017/S096719942400025X","DOIUrl":null,"url":null,"abstract":"<p><p>Growth differentiation factor 9 (<i>GDF9)</i> is an oocyte-specific paracrine factor involved in bidirectional communication, which plays an important role in oocyte developmental competence. In spite of its vital role in reproduction, there is insufficient information about exact transcriptional control mechanism of GDF9. Hence, present study was undertaken with the aim to study the expression of basic helix-loop-helix (bHLH) transcription factors (TFs) such as the factor in the germline alpha (FIGLA), twist-related protein 1 (TWIST1) and upstream stimulating factor 1 and 2 (USF1 and USF2), and nuclear receptor (NR) superfamily TFs like germ cell nuclear factor (GCNF) and oestrogen receptor 2 (ESR2) under three different <i>in vitro</i> maturation (IVM) groups [follicle-stimulating hormone (FSH), insulin-like growth factor-1 (IGF1) and oestradiol)] along with all supplementation group as positive control, to understand their role in regulation of GDF9 expression. Buffalo cumulus-oocyte complexes were aspirated from abattoir-derived ovaries and matured in different IVM groups. Following maturation, TFs expression was studied at 8 h of maturation in all four different IVM groups and correlated with GDF9 expression. USF1 displayed positive whereas GCNF, TWIST1 and ESR2 revealed negative correlation with GDF9 expression. TWIST1 & ESR2 revealing negative correlation with GDF9 expression were found to be positively correlated amongst themselves also. GCNF & USF1 revealing highly significant correlation with GDF9 expression in an opposite manner were found to be negatively correlated. The present study concludes that the expression of GDF9 in buffalo oocytes remains under control through the involvement of NR and bHLH TFs.</p>","PeriodicalId":24075,"journal":{"name":"Zygote","volume":" ","pages":"429-436"},"PeriodicalIF":1.5000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Association of growth differentiation factor 9 expression with nuclear receptor and basic helix-loop-helix transcription factors in buffalo oocytes during <i>in vitro</i> maturation.\",\"authors\":\"Tripti Jain, Asit Jain, Surender Lal Goswami, Bhaskar Roy, Sachinandan De, Rakesh Kumar, Tirtha Kumar Datta\",\"doi\":\"10.1017/S096719942400025X\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Growth differentiation factor 9 (<i>GDF9)</i> is an oocyte-specific paracrine factor involved in bidirectional communication, which plays an important role in oocyte developmental competence. In spite of its vital role in reproduction, there is insufficient information about exact transcriptional control mechanism of GDF9. Hence, present study was undertaken with the aim to study the expression of basic helix-loop-helix (bHLH) transcription factors (TFs) such as the factor in the germline alpha (FIGLA), twist-related protein 1 (TWIST1) and upstream stimulating factor 1 and 2 (USF1 and USF2), and nuclear receptor (NR) superfamily TFs like germ cell nuclear factor (GCNF) and oestrogen receptor 2 (ESR2) under three different <i>in vitro</i> maturation (IVM) groups [follicle-stimulating hormone (FSH), insulin-like growth factor-1 (IGF1) and oestradiol)] along with all supplementation group as positive control, to understand their role in regulation of GDF9 expression. Buffalo cumulus-oocyte complexes were aspirated from abattoir-derived ovaries and matured in different IVM groups. Following maturation, TFs expression was studied at 8 h of maturation in all four different IVM groups and correlated with GDF9 expression. USF1 displayed positive whereas GCNF, TWIST1 and ESR2 revealed negative correlation with GDF9 expression. TWIST1 & ESR2 revealing negative correlation with GDF9 expression were found to be positively correlated amongst themselves also. GCNF & USF1 revealing highly significant correlation with GDF9 expression in an opposite manner were found to be negatively correlated. The present study concludes that the expression of GDF9 in buffalo oocytes remains under control through the involvement of NR and bHLH TFs.</p>\",\"PeriodicalId\":24075,\"journal\":{\"name\":\"Zygote\",\"volume\":\" \",\"pages\":\"429-436\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Zygote\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1017/S096719942400025X\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/11 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zygote","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1017/S096719942400025X","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/11 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Association of growth differentiation factor 9 expression with nuclear receptor and basic helix-loop-helix transcription factors in buffalo oocytes during in vitro maturation.
Growth differentiation factor 9 (GDF9) is an oocyte-specific paracrine factor involved in bidirectional communication, which plays an important role in oocyte developmental competence. In spite of its vital role in reproduction, there is insufficient information about exact transcriptional control mechanism of GDF9. Hence, present study was undertaken with the aim to study the expression of basic helix-loop-helix (bHLH) transcription factors (TFs) such as the factor in the germline alpha (FIGLA), twist-related protein 1 (TWIST1) and upstream stimulating factor 1 and 2 (USF1 and USF2), and nuclear receptor (NR) superfamily TFs like germ cell nuclear factor (GCNF) and oestrogen receptor 2 (ESR2) under three different in vitro maturation (IVM) groups [follicle-stimulating hormone (FSH), insulin-like growth factor-1 (IGF1) and oestradiol)] along with all supplementation group as positive control, to understand their role in regulation of GDF9 expression. Buffalo cumulus-oocyte complexes were aspirated from abattoir-derived ovaries and matured in different IVM groups. Following maturation, TFs expression was studied at 8 h of maturation in all four different IVM groups and correlated with GDF9 expression. USF1 displayed positive whereas GCNF, TWIST1 and ESR2 revealed negative correlation with GDF9 expression. TWIST1 & ESR2 revealing negative correlation with GDF9 expression were found to be positively correlated amongst themselves also. GCNF & USF1 revealing highly significant correlation with GDF9 expression in an opposite manner were found to be negatively correlated. The present study concludes that the expression of GDF9 in buffalo oocytes remains under control through the involvement of NR and bHLH TFs.
期刊介绍:
An international journal dedicated to the rapid publication of original research in early embryology, Zygote covers interdisciplinary studies on gametogenesis through fertilization to gastrulation in animals and humans. The scope has been expanded to include clinical papers, molecular and developmental genetics. The editors will favour work describing fundamental processes in the cellular and molecular mechanisms of animal development, and, in particular, the identification of unifying principles in biology. Nonetheless, new technologies, review articles, debates and letters will become a prominent feature.