基于机器学习的急性期后护理环境感染诊断和预后模型:系统综述。

IF 4.7 2区 医学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS Journal of the American Medical Informatics Association Pub Date : 2024-11-12 DOI:10.1093/jamia/ocae278
Zidu Xu, Danielle Scharp, Mollie Hobensek, Jiancheng Ye, Jungang Zou, Sirui Ding, Jingjing Shang, Maxim Topaz
{"title":"基于机器学习的急性期后护理环境感染诊断和预后模型:系统综述。","authors":"Zidu Xu, Danielle Scharp, Mollie Hobensek, Jiancheng Ye, Jungang Zou, Sirui Ding, Jingjing Shang, Maxim Topaz","doi":"10.1093/jamia/ocae278","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>This study aims to (1) review machine learning (ML)-based models for early infection diagnostic and prognosis prediction in post-acute care (PAC) settings, (2) identify key risk predictors influencing infection-related outcomes, and (3) examine the quality and limitations of these models.</p><p><strong>Materials and methods: </strong>PubMed, Web of Science, Scopus, IEEE Xplore, CINAHL, and ACM digital library were searched in February 2024. Eligible studies leveraged PAC data to develop and evaluate ML models for infection-related risks. Data extraction followed the CHARMS checklist. Quality appraisal followed the PROBAST tool. Data synthesis was guided by the socio-ecological conceptual framework.</p><p><strong>Results: </strong>Thirteen studies were included, mainly focusing on respiratory infections and nursing homes. Most used regression models with structured electronic health record data. Since 2020, there has been a shift toward advanced ML algorithms and multimodal data, biosensors, and clinical notes being significant sources of unstructured data. Despite these advances, there is insufficient evidence to support performance improvements over traditional models. Individual-level risk predictors, like impaired cognition, declined function, and tachycardia, were commonly used, while contextual-level predictors were barely utilized, consequently limiting model fairness. Major sources of bias included lack of external validation, inadequate model calibration, and insufficient consideration of data complexity.</p><p><strong>Discussion and conclusion: </strong>Despite the growth of advanced modeling approaches in infection-related models in PAC settings, evidence supporting their superiority remains limited. Future research should leverage a socio-ecological lens for predictor selection and model construction, exploring optimal data modalities and ML model usage in PAC, while ensuring rigorous methodologies and fairness considerations.</p>","PeriodicalId":50016,"journal":{"name":"Journal of the American Medical Informatics Association","volume":" ","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine learning-based infection diagnostic and prognostic models in post-acute care settings: a systematic review.\",\"authors\":\"Zidu Xu, Danielle Scharp, Mollie Hobensek, Jiancheng Ye, Jungang Zou, Sirui Ding, Jingjing Shang, Maxim Topaz\",\"doi\":\"10.1093/jamia/ocae278\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objectives: </strong>This study aims to (1) review machine learning (ML)-based models for early infection diagnostic and prognosis prediction in post-acute care (PAC) settings, (2) identify key risk predictors influencing infection-related outcomes, and (3) examine the quality and limitations of these models.</p><p><strong>Materials and methods: </strong>PubMed, Web of Science, Scopus, IEEE Xplore, CINAHL, and ACM digital library were searched in February 2024. Eligible studies leveraged PAC data to develop and evaluate ML models for infection-related risks. Data extraction followed the CHARMS checklist. Quality appraisal followed the PROBAST tool. Data synthesis was guided by the socio-ecological conceptual framework.</p><p><strong>Results: </strong>Thirteen studies were included, mainly focusing on respiratory infections and nursing homes. Most used regression models with structured electronic health record data. Since 2020, there has been a shift toward advanced ML algorithms and multimodal data, biosensors, and clinical notes being significant sources of unstructured data. Despite these advances, there is insufficient evidence to support performance improvements over traditional models. Individual-level risk predictors, like impaired cognition, declined function, and tachycardia, were commonly used, while contextual-level predictors were barely utilized, consequently limiting model fairness. Major sources of bias included lack of external validation, inadequate model calibration, and insufficient consideration of data complexity.</p><p><strong>Discussion and conclusion: </strong>Despite the growth of advanced modeling approaches in infection-related models in PAC settings, evidence supporting their superiority remains limited. Future research should leverage a socio-ecological lens for predictor selection and model construction, exploring optimal data modalities and ML model usage in PAC, while ensuring rigorous methodologies and fairness considerations.</p>\",\"PeriodicalId\":50016,\"journal\":{\"name\":\"Journal of the American Medical Informatics Association\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American Medical Informatics Association\",\"FirstCategoryId\":\"91\",\"ListUrlMain\":\"https://doi.org/10.1093/jamia/ocae278\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Medical Informatics Association","FirstCategoryId":"91","ListUrlMain":"https://doi.org/10.1093/jamia/ocae278","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

研究目的本研究旨在:(1) 综述基于机器学习(ML)的急性期后护理(PAC)环境中早期感染诊断和预后预测模型;(2) 确定影响感染相关结果的关键风险预测因素;(3) 检验这些模型的质量和局限性:于 2024 年 2 月检索了 PubMed、Web of Science、Scopus、IEEE Xplore、CINAHL 和 ACM 数字图书馆。符合条件的研究利用 PAC 数据开发并评估了感染相关风险的 ML 模型。数据提取遵循 CHARMS 核对表。质量评估采用 PROBAST 工具。数据综合以社会生态概念框架为指导:共纳入 13 项研究,主要集中在呼吸道感染和疗养院。大多数研究使用了结构化电子健康记录数据回归模型。自 2020 年以来,先进的 ML 算法、多模态数据、生物传感器和临床笔记已成为非结构化数据的重要来源。尽管取得了这些进展,但仍没有足够的证据支持其性能比传统模型有所提高。个体层面的风险预测因素,如认知能力受损、功能下降和心动过速等,被普遍使用,而情境层面的预测因素几乎未被使用,从而限制了模型的公平性。偏差的主要来源包括缺乏外部验证、模型校准不足以及对数据复杂性考虑不足:尽管先进的建模方法在 PAC 环境中的感染相关模型中得到了发展,但支持其优越性的证据仍然有限。未来的研究应利用社会生态学的视角来选择预测因子和构建模型,探索 PAC 中的最佳数据模式和 ML 模型用法,同时确保采用严格的方法并考虑公平性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Machine learning-based infection diagnostic and prognostic models in post-acute care settings: a systematic review.

Objectives: This study aims to (1) review machine learning (ML)-based models for early infection diagnostic and prognosis prediction in post-acute care (PAC) settings, (2) identify key risk predictors influencing infection-related outcomes, and (3) examine the quality and limitations of these models.

Materials and methods: PubMed, Web of Science, Scopus, IEEE Xplore, CINAHL, and ACM digital library were searched in February 2024. Eligible studies leveraged PAC data to develop and evaluate ML models for infection-related risks. Data extraction followed the CHARMS checklist. Quality appraisal followed the PROBAST tool. Data synthesis was guided by the socio-ecological conceptual framework.

Results: Thirteen studies were included, mainly focusing on respiratory infections and nursing homes. Most used regression models with structured electronic health record data. Since 2020, there has been a shift toward advanced ML algorithms and multimodal data, biosensors, and clinical notes being significant sources of unstructured data. Despite these advances, there is insufficient evidence to support performance improvements over traditional models. Individual-level risk predictors, like impaired cognition, declined function, and tachycardia, were commonly used, while contextual-level predictors were barely utilized, consequently limiting model fairness. Major sources of bias included lack of external validation, inadequate model calibration, and insufficient consideration of data complexity.

Discussion and conclusion: Despite the growth of advanced modeling approaches in infection-related models in PAC settings, evidence supporting their superiority remains limited. Future research should leverage a socio-ecological lens for predictor selection and model construction, exploring optimal data modalities and ML model usage in PAC, while ensuring rigorous methodologies and fairness considerations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of the American Medical Informatics Association
Journal of the American Medical Informatics Association 医学-计算机:跨学科应用
CiteScore
14.50
自引率
7.80%
发文量
230
审稿时长
3-8 weeks
期刊介绍: JAMIA is AMIA''s premier peer-reviewed journal for biomedical and health informatics. Covering the full spectrum of activities in the field, JAMIA includes informatics articles in the areas of clinical care, clinical research, translational science, implementation science, imaging, education, consumer health, public health, and policy. JAMIA''s articles describe innovative informatics research and systems that help to advance biomedical science and to promote health. Case reports, perspectives and reviews also help readers stay connected with the most important informatics developments in implementation, policy and education.
期刊最新文献
Efficacy of the mLab App: a randomized clinical trial for increasing HIV testing uptake using mobile technology. Machine learning-based prediction models in medical decision-making in kidney disease: patient, caregiver, and clinician perspectives on trust and appropriate use. Research for all: building a diverse researcher community for the All of Us Research Program. Learning health system linchpins: information exchange and a common data model. Oncointerpreter.ai enables interactive, personalized summarization of cancer diagnostics data.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1