利用因果图理解线性交互分析。

IF 1.5 3区 心理学 Q3 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS British Journal of Mathematical & Statistical Psychology Pub Date : 2024-11-12 DOI:10.1111/bmsp.12369
Yongnam Kim, Geryong Jung
{"title":"利用因果图理解线性交互分析。","authors":"Yongnam Kim, Geryong Jung","doi":"10.1111/bmsp.12369","DOIUrl":null,"url":null,"abstract":"<p><p>Interaction analysis using linear regression is widely employed in psychology and related fields, yet it often induces confusion among applied researchers and students. This paper aims to address this confusion by developing intuitive visual explanations based on causal graphs. By leveraging causal graphs with distinct interaction nodes, we provide clear insights into interpreting main effects in the presence of interaction, the rationale behind centering to reduce multicollinearity, and other pertinent topics. The proposed graphical approach could serve as a useful complement to existing algebraic explanations, fostering a more comprehensive understanding of the mechanics of linear interaction analysis.</p>","PeriodicalId":55322,"journal":{"name":"British Journal of Mathematical & Statistical Psychology","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Understanding linear interaction analysis with causal graphs.\",\"authors\":\"Yongnam Kim, Geryong Jung\",\"doi\":\"10.1111/bmsp.12369\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Interaction analysis using linear regression is widely employed in psychology and related fields, yet it often induces confusion among applied researchers and students. This paper aims to address this confusion by developing intuitive visual explanations based on causal graphs. By leveraging causal graphs with distinct interaction nodes, we provide clear insights into interpreting main effects in the presence of interaction, the rationale behind centering to reduce multicollinearity, and other pertinent topics. The proposed graphical approach could serve as a useful complement to existing algebraic explanations, fostering a more comprehensive understanding of the mechanics of linear interaction analysis.</p>\",\"PeriodicalId\":55322,\"journal\":{\"name\":\"British Journal of Mathematical & Statistical Psychology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"British Journal of Mathematical & Statistical Psychology\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1111/bmsp.12369\",\"RegionNum\":3,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"British Journal of Mathematical & Statistical Psychology","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1111/bmsp.12369","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

心理学及相关领域广泛使用线性回归进行交互分析,但它常常给应用研究人员和学生带来困惑。本文旨在通过开发基于因果图的直观视觉解释来解决这一困惑。通过利用具有明显交互作用节点的因果图,我们可以清楚地解释存在交互作用时的主效应、居中以减少多重共线性背后的原理以及其他相关主题。所提出的图形方法可以作为现有代数解释的有益补充,促进对线性相互作用分析机制的更全面理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Understanding linear interaction analysis with causal graphs.

Interaction analysis using linear regression is widely employed in psychology and related fields, yet it often induces confusion among applied researchers and students. This paper aims to address this confusion by developing intuitive visual explanations based on causal graphs. By leveraging causal graphs with distinct interaction nodes, we provide clear insights into interpreting main effects in the presence of interaction, the rationale behind centering to reduce multicollinearity, and other pertinent topics. The proposed graphical approach could serve as a useful complement to existing algebraic explanations, fostering a more comprehensive understanding of the mechanics of linear interaction analysis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.00
自引率
3.80%
发文量
34
审稿时长
>12 weeks
期刊介绍: The British Journal of Mathematical and Statistical Psychology publishes articles relating to areas of psychology which have a greater mathematical or statistical aspect of their argument than is usually acceptable to other journals including: • mathematical psychology • statistics • psychometrics • decision making • psychophysics • classification • relevant areas of mathematics, computing and computer software These include articles that address substantitive psychological issues or that develop and extend techniques useful to psychologists. New models for psychological processes, new approaches to existing data, critiques of existing models and improved algorithms for estimating the parameters of a model are examples of articles which may be favoured.
期刊最新文献
A new Q-matrix validation method based on signal detection theory. Discriminability around polytomous knowledge structures and polytomous functions. Understanding linear interaction analysis with causal graphs. Identifiability analysis of the fixed-effects one-parameter logistic positive exponent model. Regularized Bayesian algorithms for Q-matrix inference based on saturated cognitive diagnosis modelling.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1