{"title":"低浓度下具有吸引力固体颗粒的胶体系统的粘弹特性:综述、新成果和解释。","authors":"Philippe Martinoty , Antoni Sánchez-Ferrer","doi":"10.1016/j.cis.2024.103335","DOIUrl":null,"url":null,"abstract":"<div><div>This paper concerns the viscoelastic properties and the resulting structure of colloidal systems with short-range attractions in the regime where the volume fraction f is small. Unlike the high ϕ regime, which is well understood in terms of mode-coupling theory (MCT), the low ϕ regime is still the subject of a debate based on different concepts such as percolation, diffusion-limited colloidal aggregation (DLCA), jamming, or cluster mode-coupling approach. Prior to the analysis of three examples of attractive systems at low ϕ values, a summary of concepts relevant to understanding the formation and properties of such attractive particles is discussed in the present study. Afterwards, we re-analyze the behaviour at a low ϕ of i) suspensions of carbon black (CB) particles, ii) suspensions of poly(methyl methacrylate) (PMMA) hard spheres with a depletion attraction induced by the addition of polystyrene (PS), and iii) suspensions of amino acid organogelator molecules which form rod-like objects. The rheological properties of these systems have been studied in detail and their response has been interpreted as being due either to a solid network discussed in relation to the jamming state diagram or to a suspension formed by jamming of clusters. Our analysis shows that these three systems are in fact cluster fluids and that their solid-like response corresponds to a change in their viscoelastic response, the elastic component G' becoming greater than the viscous component G\" at low frequencies. Due to the presence of weak interparticle interactions in the tens range from 1 to 15 k<sub>B</sub>T, a liquid-like state is reversibly achieved at high frequencies, as indicated by the crossover of G' and G\" as a function of frequency for a given concentration. Moreover, all these attractive particle systems at low ϕ show for both moduli a master curve which characterizes these cluster fluids and allows for the classification of these attractive particle systems.</div></div>","PeriodicalId":239,"journal":{"name":"Advances in Colloid and Interface Science","volume":"335 ","pages":"Article 103335"},"PeriodicalIF":15.9000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Viscoelastic properties of colloidal systems with attractive solid particles at low concentration: A review, new results and interpretations\",\"authors\":\"Philippe Martinoty , Antoni Sánchez-Ferrer\",\"doi\":\"10.1016/j.cis.2024.103335\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper concerns the viscoelastic properties and the resulting structure of colloidal systems with short-range attractions in the regime where the volume fraction f is small. Unlike the high ϕ regime, which is well understood in terms of mode-coupling theory (MCT), the low ϕ regime is still the subject of a debate based on different concepts such as percolation, diffusion-limited colloidal aggregation (DLCA), jamming, or cluster mode-coupling approach. Prior to the analysis of three examples of attractive systems at low ϕ values, a summary of concepts relevant to understanding the formation and properties of such attractive particles is discussed in the present study. Afterwards, we re-analyze the behaviour at a low ϕ of i) suspensions of carbon black (CB) particles, ii) suspensions of poly(methyl methacrylate) (PMMA) hard spheres with a depletion attraction induced by the addition of polystyrene (PS), and iii) suspensions of amino acid organogelator molecules which form rod-like objects. The rheological properties of these systems have been studied in detail and their response has been interpreted as being due either to a solid network discussed in relation to the jamming state diagram or to a suspension formed by jamming of clusters. Our analysis shows that these three systems are in fact cluster fluids and that their solid-like response corresponds to a change in their viscoelastic response, the elastic component G' becoming greater than the viscous component G\\\" at low frequencies. Due to the presence of weak interparticle interactions in the tens range from 1 to 15 k<sub>B</sub>T, a liquid-like state is reversibly achieved at high frequencies, as indicated by the crossover of G' and G\\\" as a function of frequency for a given concentration. Moreover, all these attractive particle systems at low ϕ show for both moduli a master curve which characterizes these cluster fluids and allows for the classification of these attractive particle systems.</div></div>\",\"PeriodicalId\":239,\"journal\":{\"name\":\"Advances in Colloid and Interface Science\",\"volume\":\"335 \",\"pages\":\"Article 103335\"},\"PeriodicalIF\":15.9000,\"publicationDate\":\"2024-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Colloid and Interface Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0001868624002586\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001868624002586","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Viscoelastic properties of colloidal systems with attractive solid particles at low concentration: A review, new results and interpretations
This paper concerns the viscoelastic properties and the resulting structure of colloidal systems with short-range attractions in the regime where the volume fraction f is small. Unlike the high ϕ regime, which is well understood in terms of mode-coupling theory (MCT), the low ϕ regime is still the subject of a debate based on different concepts such as percolation, diffusion-limited colloidal aggregation (DLCA), jamming, or cluster mode-coupling approach. Prior to the analysis of three examples of attractive systems at low ϕ values, a summary of concepts relevant to understanding the formation and properties of such attractive particles is discussed in the present study. Afterwards, we re-analyze the behaviour at a low ϕ of i) suspensions of carbon black (CB) particles, ii) suspensions of poly(methyl methacrylate) (PMMA) hard spheres with a depletion attraction induced by the addition of polystyrene (PS), and iii) suspensions of amino acid organogelator molecules which form rod-like objects. The rheological properties of these systems have been studied in detail and their response has been interpreted as being due either to a solid network discussed in relation to the jamming state diagram or to a suspension formed by jamming of clusters. Our analysis shows that these three systems are in fact cluster fluids and that their solid-like response corresponds to a change in their viscoelastic response, the elastic component G' becoming greater than the viscous component G" at low frequencies. Due to the presence of weak interparticle interactions in the tens range from 1 to 15 kBT, a liquid-like state is reversibly achieved at high frequencies, as indicated by the crossover of G' and G" as a function of frequency for a given concentration. Moreover, all these attractive particle systems at low ϕ show for both moduli a master curve which characterizes these cluster fluids and allows for the classification of these attractive particle systems.
期刊介绍:
"Advances in Colloid and Interface Science" is an international journal that focuses on experimental and theoretical developments in interfacial and colloidal phenomena. The journal covers a wide range of disciplines including biology, chemistry, physics, and technology.
The journal accepts review articles on any topic within the scope of colloid and interface science. These articles should provide an in-depth analysis of the subject matter, offering a critical review of the current state of the field. The author's informed opinion on the topic should also be included. The manuscript should compare and contrast ideas found in the reviewed literature and address the limitations of these ideas.
Typically, the articles published in this journal are written by recognized experts in the field.