{"title":"WiFaKey:从野生人脸生成加密密钥","authors":"Xingbo Dong;Hui Zhang;Yen Lung Lai;Zhe Jin;Junduan Huang;Wenxiong Kang;Andrew Beng Jin Teoh","doi":"10.1109/TIM.2024.3485436","DOIUrl":null,"url":null,"abstract":"Deriving a unique cryptographic key from biometric measurements is a challenging task due to the existing noise gap between the biometric measurements and error correction coding. Additionally, privacy and security concerns arise as biometric measurements are inherently linked to the user. Bio-cryptosystems represent a key branch of solutions aimed at addressing these issues. However, many existing bio-cryptosystems rely on handcrafted feature extractors and error correction codes (ECC), often leading to performance degradation. To address these challenges and improve the reliability of biometric measurements, we propose a novel biometric cryptosystem (BC) named WiFaKey, for generating cryptographic keys from face in unconstrained settings. Specifically, WiFaKey first introduces an adaptive random masking-driven feature transformation pipeline, AdaMTrans. AdaMTrans effectively quantizes and binarizes real-valued features and incorporates an adaptive random masking scheme to align the bit error rate (BER) with error correction requirements, thereby mitigating the noise gap. Besides, WiFaKey incorporates a supervised learning-based neural decoding scheme called neural-MS decoder, which delivers a more robust error correction performance with less iteration than nonlearning decoders, thereby alleviating the performance degradation. We evaluated WiFaKey using widely adopted face feature extractors on six large unconstrained and two constrained datasets. On the labeled faces in the wild database (LFW) dataset, WiFaKey achieved an average genuine match rate (GMR) of 85.45% and 85.20% at a 0% false match rate (FMR) for MagFace and AdaFace features, respectively. Our comprehensive comparative analysis shows a significant performance improvement of WiFaKey. The source code of our work is available at github.com/xingbod/WiFaKey.","PeriodicalId":13341,"journal":{"name":"IEEE Transactions on Instrumentation and Measurement","volume":"73 ","pages":"1-16"},"PeriodicalIF":5.6000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"WiFaKey: Generating Cryptographic Keys From Face in the Wild\",\"authors\":\"Xingbo Dong;Hui Zhang;Yen Lung Lai;Zhe Jin;Junduan Huang;Wenxiong Kang;Andrew Beng Jin Teoh\",\"doi\":\"10.1109/TIM.2024.3485436\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deriving a unique cryptographic key from biometric measurements is a challenging task due to the existing noise gap between the biometric measurements and error correction coding. Additionally, privacy and security concerns arise as biometric measurements are inherently linked to the user. Bio-cryptosystems represent a key branch of solutions aimed at addressing these issues. However, many existing bio-cryptosystems rely on handcrafted feature extractors and error correction codes (ECC), often leading to performance degradation. To address these challenges and improve the reliability of biometric measurements, we propose a novel biometric cryptosystem (BC) named WiFaKey, for generating cryptographic keys from face in unconstrained settings. Specifically, WiFaKey first introduces an adaptive random masking-driven feature transformation pipeline, AdaMTrans. AdaMTrans effectively quantizes and binarizes real-valued features and incorporates an adaptive random masking scheme to align the bit error rate (BER) with error correction requirements, thereby mitigating the noise gap. Besides, WiFaKey incorporates a supervised learning-based neural decoding scheme called neural-MS decoder, which delivers a more robust error correction performance with less iteration than nonlearning decoders, thereby alleviating the performance degradation. We evaluated WiFaKey using widely adopted face feature extractors on six large unconstrained and two constrained datasets. On the labeled faces in the wild database (LFW) dataset, WiFaKey achieved an average genuine match rate (GMR) of 85.45% and 85.20% at a 0% false match rate (FMR) for MagFace and AdaFace features, respectively. Our comprehensive comparative analysis shows a significant performance improvement of WiFaKey. The source code of our work is available at github.com/xingbod/WiFaKey.\",\"PeriodicalId\":13341,\"journal\":{\"name\":\"IEEE Transactions on Instrumentation and Measurement\",\"volume\":\"73 \",\"pages\":\"1-16\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2024-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Instrumentation and Measurement\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10731948/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Instrumentation and Measurement","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10731948/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
WiFaKey: Generating Cryptographic Keys From Face in the Wild
Deriving a unique cryptographic key from biometric measurements is a challenging task due to the existing noise gap between the biometric measurements and error correction coding. Additionally, privacy and security concerns arise as biometric measurements are inherently linked to the user. Bio-cryptosystems represent a key branch of solutions aimed at addressing these issues. However, many existing bio-cryptosystems rely on handcrafted feature extractors and error correction codes (ECC), often leading to performance degradation. To address these challenges and improve the reliability of biometric measurements, we propose a novel biometric cryptosystem (BC) named WiFaKey, for generating cryptographic keys from face in unconstrained settings. Specifically, WiFaKey first introduces an adaptive random masking-driven feature transformation pipeline, AdaMTrans. AdaMTrans effectively quantizes and binarizes real-valued features and incorporates an adaptive random masking scheme to align the bit error rate (BER) with error correction requirements, thereby mitigating the noise gap. Besides, WiFaKey incorporates a supervised learning-based neural decoding scheme called neural-MS decoder, which delivers a more robust error correction performance with less iteration than nonlearning decoders, thereby alleviating the performance degradation. We evaluated WiFaKey using widely adopted face feature extractors on six large unconstrained and two constrained datasets. On the labeled faces in the wild database (LFW) dataset, WiFaKey achieved an average genuine match rate (GMR) of 85.45% and 85.20% at a 0% false match rate (FMR) for MagFace and AdaFace features, respectively. Our comprehensive comparative analysis shows a significant performance improvement of WiFaKey. The source code of our work is available at github.com/xingbod/WiFaKey.
期刊介绍:
Papers are sought that address innovative solutions to the development and use of electrical and electronic instruments and equipment to measure, monitor and/or record physical phenomena for the purpose of advancing measurement science, methods, functionality and applications. The scope of these papers may encompass: (1) theory, methodology, and practice of measurement; (2) design, development and evaluation of instrumentation and measurement systems and components used in generating, acquiring, conditioning and processing signals; (3) analysis, representation, display, and preservation of the information obtained from a set of measurements; and (4) scientific and technical support to establishment and maintenance of technical standards in the field of Instrumentation and Measurement.