TransMRE:利用完全稀疏体素变换器进行多观测平面表示编码,用于三维物体检测

IF 5.6 2区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Transactions on Instrumentation and Measurement Pub Date : 2024-11-04 DOI:10.1109/TIM.2024.3480206
Ziming Zhu;Yu Zhu;Kezhi Zhang;Hangyu Li;Xiaofeng Ling
{"title":"TransMRE:利用完全稀疏体素变换器进行多观测平面表示编码,用于三维物体检测","authors":"Ziming Zhu;Yu Zhu;Kezhi Zhang;Hangyu Li;Xiaofeng Ling","doi":"10.1109/TIM.2024.3480206","DOIUrl":null,"url":null,"abstract":"The effective representation and feature extraction of 3-D scenes from sparse and unstructured point clouds pose a significant challenge in 3-D object detection. In this article, we propose TransMRE, a network that enables fully sparse multiple observation plane feature fusion using LiDAR point clouds as single-modal input. TransMRE achieves this by sparsely factorizing a 3-D voxel scene into three separate observation planes: XY, XZ, and YZ planes. In addition, we propose Observation Plane Sparse Fusion and Interaction to explore the internal relationship between different observation planes. The Transformer mechanism is employed to realize feature attention within a single observation plane and feature attention across multiple observation planes. This recursive application of attention is done during multiple observation plane projection feature aggregation to effectively model the entire 3-D scene. This approach addresses the limitation of insufficient feature representation ability under a single bird’s-eye view (BEV) constructed by extremely sparse point clouds. Furthermore, TransMRE maintains the full sparsity property of the entire network, eliminating the need to convert sparse feature maps into dense feature maps. As a result, it can be effectively applied to LiDAR point cloud data with large scanning ranges, such as Argoverse 2, while ensuring low computational complexity. Extensive experiments were conducted to evaluate the effectiveness of TransMRE, achieving 64.9 mAP and 70.4 NDS on the nuScenes detection benchmark, and 32.3 mAP on the Argoverse 2 detection benchmark. These results demonstrate that our method outperforms state-of-the-art methods.","PeriodicalId":13341,"journal":{"name":"IEEE Transactions on Instrumentation and Measurement","volume":"73 ","pages":"1-13"},"PeriodicalIF":5.6000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"TransMRE: Multiple Observation Planes Representation Encoding With Fully Sparse Voxel Transformers for 3-D Object Detection\",\"authors\":\"Ziming Zhu;Yu Zhu;Kezhi Zhang;Hangyu Li;Xiaofeng Ling\",\"doi\":\"10.1109/TIM.2024.3480206\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The effective representation and feature extraction of 3-D scenes from sparse and unstructured point clouds pose a significant challenge in 3-D object detection. In this article, we propose TransMRE, a network that enables fully sparse multiple observation plane feature fusion using LiDAR point clouds as single-modal input. TransMRE achieves this by sparsely factorizing a 3-D voxel scene into three separate observation planes: XY, XZ, and YZ planes. In addition, we propose Observation Plane Sparse Fusion and Interaction to explore the internal relationship between different observation planes. The Transformer mechanism is employed to realize feature attention within a single observation plane and feature attention across multiple observation planes. This recursive application of attention is done during multiple observation plane projection feature aggregation to effectively model the entire 3-D scene. This approach addresses the limitation of insufficient feature representation ability under a single bird’s-eye view (BEV) constructed by extremely sparse point clouds. Furthermore, TransMRE maintains the full sparsity property of the entire network, eliminating the need to convert sparse feature maps into dense feature maps. As a result, it can be effectively applied to LiDAR point cloud data with large scanning ranges, such as Argoverse 2, while ensuring low computational complexity. Extensive experiments were conducted to evaluate the effectiveness of TransMRE, achieving 64.9 mAP and 70.4 NDS on the nuScenes detection benchmark, and 32.3 mAP on the Argoverse 2 detection benchmark. These results demonstrate that our method outperforms state-of-the-art methods.\",\"PeriodicalId\":13341,\"journal\":{\"name\":\"IEEE Transactions on Instrumentation and Measurement\",\"volume\":\"73 \",\"pages\":\"1-13\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2024-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Instrumentation and Measurement\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10742427/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Instrumentation and Measurement","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10742427/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

如何从稀疏和非结构化的点云中有效地表示和提取三维场景的特征,是三维物体检测中的一项重大挑战。在本文中,我们提出了 TransMRE,这是一种利用激光雷达点云作为单模态输入实现完全稀疏多观测平面特征融合的网络。TransMRE 通过将三维体素场景稀疏因子化为三个独立的观测平面来实现这一目标:XY、XZ 和 YZ 平面。此外,我们还提出了观测平面稀疏融合和交互,以探索不同观测平面之间的内部关系。Transformer 机制用于实现单个观测平面内的特征关注和跨多个观测平面的特征关注。在多个观测平面投影特征聚合过程中,这种注意的递归应用可有效地为整个三维场景建模。这种方法解决了由极其稀疏的点云构建的单一鸟瞰图(BEV)下特征表示能力不足的限制。此外,TransMRE 保持了整个网络的完全稀疏性,无需将稀疏特征图转换为密集特征图。因此,它可以有效地应用于扫描范围较大的激光雷达点云数据,如 Argoverse 2,同时确保较低的计算复杂度。为了评估 TransMRE 的有效性,我们进行了广泛的实验,在 nuScenes 检测基准中实现了 64.9 mAP 和 70.4 NDS,在 Argoverse 2 检测基准中实现了 32.3 mAP。这些结果表明,我们的方法优于最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
TransMRE: Multiple Observation Planes Representation Encoding With Fully Sparse Voxel Transformers for 3-D Object Detection
The effective representation and feature extraction of 3-D scenes from sparse and unstructured point clouds pose a significant challenge in 3-D object detection. In this article, we propose TransMRE, a network that enables fully sparse multiple observation plane feature fusion using LiDAR point clouds as single-modal input. TransMRE achieves this by sparsely factorizing a 3-D voxel scene into three separate observation planes: XY, XZ, and YZ planes. In addition, we propose Observation Plane Sparse Fusion and Interaction to explore the internal relationship between different observation planes. The Transformer mechanism is employed to realize feature attention within a single observation plane and feature attention across multiple observation planes. This recursive application of attention is done during multiple observation plane projection feature aggregation to effectively model the entire 3-D scene. This approach addresses the limitation of insufficient feature representation ability under a single bird’s-eye view (BEV) constructed by extremely sparse point clouds. Furthermore, TransMRE maintains the full sparsity property of the entire network, eliminating the need to convert sparse feature maps into dense feature maps. As a result, it can be effectively applied to LiDAR point cloud data with large scanning ranges, such as Argoverse 2, while ensuring low computational complexity. Extensive experiments were conducted to evaluate the effectiveness of TransMRE, achieving 64.9 mAP and 70.4 NDS on the nuScenes detection benchmark, and 32.3 mAP on the Argoverse 2 detection benchmark. These results demonstrate that our method outperforms state-of-the-art methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Instrumentation and Measurement
IEEE Transactions on Instrumentation and Measurement 工程技术-工程:电子与电气
CiteScore
9.00
自引率
23.20%
发文量
1294
审稿时长
3.9 months
期刊介绍: Papers are sought that address innovative solutions to the development and use of electrical and electronic instruments and equipment to measure, monitor and/or record physical phenomena for the purpose of advancing measurement science, methods, functionality and applications. The scope of these papers may encompass: (1) theory, methodology, and practice of measurement; (2) design, development and evaluation of instrumentation and measurement systems and components used in generating, acquiring, conditioning and processing signals; (3) analysis, representation, display, and preservation of the information obtained from a set of measurements; and (4) scientific and technical support to establishment and maintenance of technical standards in the field of Instrumentation and Measurement.
期刊最新文献
Errata to “A Spherical Coil Array for the Calibration of Whole-Head Magnetoencephalograph Systems” Adaptive EPI-Matching Cost for Light Field Disparity Estimation Robust Surface Area Measurement of Unorganized Point Clouds Based on Multiscale Supervoxel Segmentation Optimized Fuzzy Slope Entropy: A Complexity Measure for Nonlinear Time Series A Multidepth Step-Training Convolutional Neural Network for Power Machinery Fault Diagnosis Under Variable Loads
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1