Mahendra S. Shinde, Abhinay S. Mandawade, Manoj A. More, Swapnil S. Tayade, Laxman N. Bhoy, Ganesh E. Patil
{"title":"氧化铋厚膜的氨气传感特性及其结构、光学和形态学表征","authors":"Mahendra S. Shinde, Abhinay S. Mandawade, Manoj A. More, Swapnil S. Tayade, Laxman N. Bhoy, Ganesh E. Patil","doi":"10.1134/S1063783424601243","DOIUrl":null,"url":null,"abstract":"<p>This paper successfully synthesized Bismuth oxide (Bi<sub>2</sub>O<sub>3</sub>) nanoparticles (NPs) using the sol–gel method as Bismuth nitrate pentahydrate as a precursor. The average crystallite size of the NPs was characterized by X-ray diffraction (XRD) analysis and the size of the NPs found to be 17 nm. For the band gap measurement UV-visible spectra of NPs were recorded and it was found to be 2.7 eV. The surface morphology of Bi<sub>2</sub>O<sub>3</sub> NPs was examined through field emission scanning electron microscopy (FESEM) showing spherical nature-like morphology. The gas sensor was fabricated using as-prepared Bi<sub>2</sub>O<sub>3</sub> NPs by standard screen-printing technique and it was tested for various gases such as NH<sub>3</sub>, NO<sub>2</sub>, ethanol, LPG, and methanol as a function of operating temperature. The effect of operating temperature and gas concentration were investigated in detail to understand Bi<sub>2</sub>O<sub>3</sub> NPs sensor for NH<sub>3</sub> gas and found to be very efficient.</p>","PeriodicalId":731,"journal":{"name":"Physics of the Solid State","volume":"66 11","pages":"537 - 542"},"PeriodicalIF":0.9000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ammonia Gas Sensing Properties of Bismuth Oxide Thick Films and Its Structural, Optical, Morphological Characterization\",\"authors\":\"Mahendra S. Shinde, Abhinay S. Mandawade, Manoj A. More, Swapnil S. Tayade, Laxman N. Bhoy, Ganesh E. Patil\",\"doi\":\"10.1134/S1063783424601243\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper successfully synthesized Bismuth oxide (Bi<sub>2</sub>O<sub>3</sub>) nanoparticles (NPs) using the sol–gel method as Bismuth nitrate pentahydrate as a precursor. The average crystallite size of the NPs was characterized by X-ray diffraction (XRD) analysis and the size of the NPs found to be 17 nm. For the band gap measurement UV-visible spectra of NPs were recorded and it was found to be 2.7 eV. The surface morphology of Bi<sub>2</sub>O<sub>3</sub> NPs was examined through field emission scanning electron microscopy (FESEM) showing spherical nature-like morphology. The gas sensor was fabricated using as-prepared Bi<sub>2</sub>O<sub>3</sub> NPs by standard screen-printing technique and it was tested for various gases such as NH<sub>3</sub>, NO<sub>2</sub>, ethanol, LPG, and methanol as a function of operating temperature. The effect of operating temperature and gas concentration were investigated in detail to understand Bi<sub>2</sub>O<sub>3</sub> NPs sensor for NH<sub>3</sub> gas and found to be very efficient.</p>\",\"PeriodicalId\":731,\"journal\":{\"name\":\"Physics of the Solid State\",\"volume\":\"66 11\",\"pages\":\"537 - 542\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics of the Solid State\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1063783424601243\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics of the Solid State","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S1063783424601243","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
Ammonia Gas Sensing Properties of Bismuth Oxide Thick Films and Its Structural, Optical, Morphological Characterization
This paper successfully synthesized Bismuth oxide (Bi2O3) nanoparticles (NPs) using the sol–gel method as Bismuth nitrate pentahydrate as a precursor. The average crystallite size of the NPs was characterized by X-ray diffraction (XRD) analysis and the size of the NPs found to be 17 nm. For the band gap measurement UV-visible spectra of NPs were recorded and it was found to be 2.7 eV. The surface morphology of Bi2O3 NPs was examined through field emission scanning electron microscopy (FESEM) showing spherical nature-like morphology. The gas sensor was fabricated using as-prepared Bi2O3 NPs by standard screen-printing technique and it was tested for various gases such as NH3, NO2, ethanol, LPG, and methanol as a function of operating temperature. The effect of operating temperature and gas concentration were investigated in detail to understand Bi2O3 NPs sensor for NH3 gas and found to be very efficient.
期刊介绍:
Presents the latest results from Russia’s leading researchers in condensed matter physics at the Russian Academy of Sciences and other prestigious institutions. Covers all areas of solid state physics including solid state optics, solid state acoustics, electronic and vibrational spectra, phase transitions, ferroelectricity, magnetism, and superconductivity. Also presents review papers on the most important problems in solid state physics.