早花 3 等位基因影响大白菜昼夜节律钟的温度响应性

IF 6.5 1区 生物学 Q1 PLANT SCIENCES Plant Physiology Pub Date : 2024-11-15 DOI:10.1093/plphys/kiae505
Shan Wang, Daling Feng, Yakun Zheng, Yin Lu, Kailin Shi, Rui Yang, Wei Ma, Na Li, Mengyang Liu, Yanhua Wang, Yiguo Hong, C Robertson McClung, Jianjun Zhao
{"title":"早花 3 等位基因影响大白菜昼夜节律钟的温度响应性","authors":"Shan Wang, Daling Feng, Yakun Zheng, Yin Lu, Kailin Shi, Rui Yang, Wei Ma, Na Li, Mengyang Liu, Yanhua Wang, Yiguo Hong, C Robertson McClung, Jianjun Zhao","doi":"10.1093/plphys/kiae505","DOIUrl":null,"url":null,"abstract":"Temperature is an environmental cue that entrains the circadian clock, adapting it to local thermal and photoperiodic conditions that characterize different geographic regions. Circadian clock thermal adaptation in leafy vegetables such as Chinese cabbage (Brassica rapa ssp. pekinensis) is poorly understood but essential to sustain and increase vegetable production under changing climates. We investigated circadian rhythmicity in natural Chinese cabbage accessions grown at 14, 20, and 28 °C. The circadian period was significantly shorter at 20 °C than at either 14 or 28 °C, and the responses to increasing temperature and temperature compensation (Q10) were associated with population structure. Genome-wide association studies mapping identified variation responsible for temperature compensation as measured by Q10 value for temperature increase from 20 to 28 °C. Haplotype analysis indicated that B. rapa EARLY FLOWERING 3 H1 Allele (BrELF3H1) conferred a significantly higher Q10 value at 20 to 28 °C than BrELF3H2. Co-segregation analyses of an F2 population derived from a BrELF3H1 × BrELF3H2 cross revealed that variation among BrELF3 alleles determined variation in the circadian period of Chinese cabbage at 20 °C. However, their differential impact on circadian oscillation was attenuated at 28 °C. Transgenic complementation in Arabidopsis thaliana elf3-8 mutants validated the involvement of BrELF3 in the circadian clock response to thermal cues, with BrELF3H1 conferring a higher Q10 value than BrELF3 H2 at 20 to 28 °C. Thus, BrELF3 is critical to the circadian clock response to ambient temperature in Chinese cabbage. These findings have clear implications for breeding new varieties with enhanced resilience to extreme temperatures.","PeriodicalId":20101,"journal":{"name":"Plant Physiology","volume":"75 1","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"EARLY FLOWERING 3 alleles affect the temperature responsiveness of the circadian clock in Chinese cabbage\",\"authors\":\"Shan Wang, Daling Feng, Yakun Zheng, Yin Lu, Kailin Shi, Rui Yang, Wei Ma, Na Li, Mengyang Liu, Yanhua Wang, Yiguo Hong, C Robertson McClung, Jianjun Zhao\",\"doi\":\"10.1093/plphys/kiae505\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Temperature is an environmental cue that entrains the circadian clock, adapting it to local thermal and photoperiodic conditions that characterize different geographic regions. Circadian clock thermal adaptation in leafy vegetables such as Chinese cabbage (Brassica rapa ssp. pekinensis) is poorly understood but essential to sustain and increase vegetable production under changing climates. We investigated circadian rhythmicity in natural Chinese cabbage accessions grown at 14, 20, and 28 °C. The circadian period was significantly shorter at 20 °C than at either 14 or 28 °C, and the responses to increasing temperature and temperature compensation (Q10) were associated with population structure. Genome-wide association studies mapping identified variation responsible for temperature compensation as measured by Q10 value for temperature increase from 20 to 28 °C. Haplotype analysis indicated that B. rapa EARLY FLOWERING 3 H1 Allele (BrELF3H1) conferred a significantly higher Q10 value at 20 to 28 °C than BrELF3H2. Co-segregation analyses of an F2 population derived from a BrELF3H1 × BrELF3H2 cross revealed that variation among BrELF3 alleles determined variation in the circadian period of Chinese cabbage at 20 °C. However, their differential impact on circadian oscillation was attenuated at 28 °C. Transgenic complementation in Arabidopsis thaliana elf3-8 mutants validated the involvement of BrELF3 in the circadian clock response to thermal cues, with BrELF3H1 conferring a higher Q10 value than BrELF3 H2 at 20 to 28 °C. Thus, BrELF3 is critical to the circadian clock response to ambient temperature in Chinese cabbage. These findings have clear implications for breeding new varieties with enhanced resilience to extreme temperatures.\",\"PeriodicalId\":20101,\"journal\":{\"name\":\"Plant Physiology\",\"volume\":\"75 1\",\"pages\":\"\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2024-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Physiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/plphys/kiae505\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Physiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/plphys/kiae505","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

温度是诱导昼夜节律钟的环境线索,它使昼夜节律钟适应不同地理区域的当地热和光周期条件。人们对叶菜类蔬菜(如大白菜)的昼夜节律钟热适应性知之甚少,但它对在不断变化的气候条件下维持和提高蔬菜产量至关重要。我们研究了在 14、20 和 28 °C条件下生长的天然大白菜品种的昼夜节律性。昼夜节律周期在 20 °C时明显短于14 °C或28 °C,对温度升高和温度补偿(Q10)的反应与种群结构有关。全基因组关联研究图谱确定了温度补偿的变异,温度从20 °C上升到28 °C时的Q10值是温度补偿的测量值。单倍型分析表明,B. rapa早花3 H1等位基因(BrELF3H1)在20至28 °C时的Q10值显著高于BrELF3H2。对来自 BrELF3H1 × BrELF3H2 杂交的 F2 群体的共分离分析表明,BrELF3 等位基因之间的变异决定了大白菜在 20 °C 下昼夜节律周期的变异。然而,它们对昼夜节律振荡的不同影响在 28 ℃ 时有所减弱。拟南芥elf3-8突变体的转基因互补验证了BrELF3参与了昼夜节律钟对热线索的反应,在20至28 °C时,BrELF3H1比BrELF3 H2赋予更高的Q10值。因此,BrELF3 对大白菜昼夜节律钟对环境温度的反应至关重要。这些发现对于培育具有更强抗极端温度能力的新品种具有明显的意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
EARLY FLOWERING 3 alleles affect the temperature responsiveness of the circadian clock in Chinese cabbage
Temperature is an environmental cue that entrains the circadian clock, adapting it to local thermal and photoperiodic conditions that characterize different geographic regions. Circadian clock thermal adaptation in leafy vegetables such as Chinese cabbage (Brassica rapa ssp. pekinensis) is poorly understood but essential to sustain and increase vegetable production under changing climates. We investigated circadian rhythmicity in natural Chinese cabbage accessions grown at 14, 20, and 28 °C. The circadian period was significantly shorter at 20 °C than at either 14 or 28 °C, and the responses to increasing temperature and temperature compensation (Q10) were associated with population structure. Genome-wide association studies mapping identified variation responsible for temperature compensation as measured by Q10 value for temperature increase from 20 to 28 °C. Haplotype analysis indicated that B. rapa EARLY FLOWERING 3 H1 Allele (BrELF3H1) conferred a significantly higher Q10 value at 20 to 28 °C than BrELF3H2. Co-segregation analyses of an F2 population derived from a BrELF3H1 × BrELF3H2 cross revealed that variation among BrELF3 alleles determined variation in the circadian period of Chinese cabbage at 20 °C. However, their differential impact on circadian oscillation was attenuated at 28 °C. Transgenic complementation in Arabidopsis thaliana elf3-8 mutants validated the involvement of BrELF3 in the circadian clock response to thermal cues, with BrELF3H1 conferring a higher Q10 value than BrELF3 H2 at 20 to 28 °C. Thus, BrELF3 is critical to the circadian clock response to ambient temperature in Chinese cabbage. These findings have clear implications for breeding new varieties with enhanced resilience to extreme temperatures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Plant Physiology
Plant Physiology 生物-植物科学
CiteScore
12.20
自引率
5.40%
发文量
535
审稿时长
2.3 months
期刊介绍: Plant Physiology® is a distinguished and highly respected journal with a rich history dating back to its establishment in 1926. It stands as a leading international publication in the field of plant biology, covering a comprehensive range of topics from the molecular and structural aspects of plant life to systems biology and ecophysiology. Recognized as the most highly cited journal in plant sciences, Plant Physiology® is a testament to its commitment to excellence and the dissemination of groundbreaking research. As the official publication of the American Society of Plant Biologists, Plant Physiology® upholds rigorous peer-review standards, ensuring that the scientific community receives the highest quality research. The journal releases 12 issues annually, providing a steady stream of new findings and insights to its readership.
期刊最新文献
Histone modification H3K27me3 is essential during chilling-induced flowering in Litchi chinensis Packaging “vegetable oils”: Insights into plant lipid droplet proteins CELL DIVISION CYCLE 5 controls floral transition by regulating flowering gene transcription and splicing in Arabidopsis. Cyclic and pseudo-cyclic electron pathways play antagonistic roles during nitrogen deficiency in Chlamydomonas reinhardtii. The E3 ubiquitin ligase COP1 and transcription factors HY5 and RHD6 integrate light signaling and root hair development.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1