{"title":"ECMWF 集合预报系统中的亚季北大西洋涛动预测过程评估","authors":"Minju Kim, Changhyun Yoo, Hyemi Kim","doi":"10.1029/2024GL111291","DOIUrl":null,"url":null,"abstract":"<p>This study evaluates the prediction skill of the North Atlantic Oscillation (NAO) pattern and its associated energy budget as simulated by the European Center for Medium-Range Weather Forecasts ensemble forecast system. By classifying NAO events into high- and low-skill cases, we analyzed the stationarity of NAO patterns and the role of baroclinic energy conversion in NAO prediction. In both positive and negative NAO phases, high-skill cases exhibited more stationary NAO patterns than low-skill cases. The analysis of processes indicates that high-skill NAO cases are due to stronger baroclinic maintenance of NAO, with its initial position at the climatological thermal trough, whereas low-skill NAO cases result from forecast biases in wave propagation from the North Pacific. Specifically, biases in baroclinic energy conversion in the meridional direction from week 2 lead to weak advection of the eddy available potential energy (EAPE), resulting in lower prediction skill.</p>","PeriodicalId":12523,"journal":{"name":"Geophysical Research Letters","volume":"51 22","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024GL111291","citationCount":"0","resultStr":"{\"title\":\"Process Evaluation of Subseasonal North Atlantic Oscillation Prediction in the ECMWF Ensemble Forecast System\",\"authors\":\"Minju Kim, Changhyun Yoo, Hyemi Kim\",\"doi\":\"10.1029/2024GL111291\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This study evaluates the prediction skill of the North Atlantic Oscillation (NAO) pattern and its associated energy budget as simulated by the European Center for Medium-Range Weather Forecasts ensemble forecast system. By classifying NAO events into high- and low-skill cases, we analyzed the stationarity of NAO patterns and the role of baroclinic energy conversion in NAO prediction. In both positive and negative NAO phases, high-skill cases exhibited more stationary NAO patterns than low-skill cases. The analysis of processes indicates that high-skill NAO cases are due to stronger baroclinic maintenance of NAO, with its initial position at the climatological thermal trough, whereas low-skill NAO cases result from forecast biases in wave propagation from the North Pacific. Specifically, biases in baroclinic energy conversion in the meridional direction from week 2 lead to weak advection of the eddy available potential energy (EAPE), resulting in lower prediction skill.</p>\",\"PeriodicalId\":12523,\"journal\":{\"name\":\"Geophysical Research Letters\",\"volume\":\"51 22\",\"pages\":\"\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024GL111291\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geophysical Research Letters\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2024GL111291\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geophysical Research Letters","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024GL111291","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
Process Evaluation of Subseasonal North Atlantic Oscillation Prediction in the ECMWF Ensemble Forecast System
This study evaluates the prediction skill of the North Atlantic Oscillation (NAO) pattern and its associated energy budget as simulated by the European Center for Medium-Range Weather Forecasts ensemble forecast system. By classifying NAO events into high- and low-skill cases, we analyzed the stationarity of NAO patterns and the role of baroclinic energy conversion in NAO prediction. In both positive and negative NAO phases, high-skill cases exhibited more stationary NAO patterns than low-skill cases. The analysis of processes indicates that high-skill NAO cases are due to stronger baroclinic maintenance of NAO, with its initial position at the climatological thermal trough, whereas low-skill NAO cases result from forecast biases in wave propagation from the North Pacific. Specifically, biases in baroclinic energy conversion in the meridional direction from week 2 lead to weak advection of the eddy available potential energy (EAPE), resulting in lower prediction skill.
期刊介绍:
Geophysical Research Letters (GRL) publishes high-impact, innovative, and timely research on major scientific advances in all the major geoscience disciplines. Papers are communications-length articles and should have broad and immediate implications in their discipline or across the geosciences. GRLmaintains the fastest turn-around of all high-impact publications in the geosciences and works closely with authors to ensure broad visibility of top papers.