Xinyi Liu, Tao Zhou, Xinyue Sheng, Hui Li, Wei-Tao Liu
{"title":"二氧化钛表面对挥发性有机化合物的特异性和高亲和性吸附。","authors":"Xinyi Liu, Tao Zhou, Xinyue Sheng, Hui Li, Wei-Tao Liu","doi":"10.1063/5.0231581","DOIUrl":null,"url":null,"abstract":"<p><p>The interaction between metal oxides and volatile organic compounds (VOCs) from the ambient atmosphere plays an important role in environmental and catalytic applications. Previous scanning probe microscopy and x-ray spectroscopy studies revealed surprisingly that the TiO2 [rutile (110)] surface selectively adsorbed atmospheric carboxylic acids, which typically exist in only parts-per-billion concentrations. In this work, we used in situ sum-frequency vibrational spectroscopy to study the interaction between rutile (110) and typical VOC molecules, including formic acid, acetic acid, and formaldehyde. Spectra from all three adsorbed molecules on rutile (110) were similar to the rutile surface spectrum in the ambient atmosphere, showing a broad resonance near 2950 cm-1 that can be attributed to the bridging bidentate adsorption of corresponding compounds. In contrast, on a fused silica surface, a molecular monodentate adsorption configuration was observed for all the molecules, with aliphatic carbons appearing to be the dominant adventitious species.</p>","PeriodicalId":15313,"journal":{"name":"Journal of Chemical Physics","volume":"161 19","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Specific and high-affinity adsorption of volatile organic compounds on titanium dioxide surface.\",\"authors\":\"Xinyi Liu, Tao Zhou, Xinyue Sheng, Hui Li, Wei-Tao Liu\",\"doi\":\"10.1063/5.0231581\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The interaction between metal oxides and volatile organic compounds (VOCs) from the ambient atmosphere plays an important role in environmental and catalytic applications. Previous scanning probe microscopy and x-ray spectroscopy studies revealed surprisingly that the TiO2 [rutile (110)] surface selectively adsorbed atmospheric carboxylic acids, which typically exist in only parts-per-billion concentrations. In this work, we used in situ sum-frequency vibrational spectroscopy to study the interaction between rutile (110) and typical VOC molecules, including formic acid, acetic acid, and formaldehyde. Spectra from all three adsorbed molecules on rutile (110) were similar to the rutile surface spectrum in the ambient atmosphere, showing a broad resonance near 2950 cm-1 that can be attributed to the bridging bidentate adsorption of corresponding compounds. In contrast, on a fused silica surface, a molecular monodentate adsorption configuration was observed for all the molecules, with aliphatic carbons appearing to be the dominant adventitious species.</p>\",\"PeriodicalId\":15313,\"journal\":{\"name\":\"Journal of Chemical Physics\",\"volume\":\"161 19\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemical Physics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0231581\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1063/5.0231581","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Specific and high-affinity adsorption of volatile organic compounds on titanium dioxide surface.
The interaction between metal oxides and volatile organic compounds (VOCs) from the ambient atmosphere plays an important role in environmental and catalytic applications. Previous scanning probe microscopy and x-ray spectroscopy studies revealed surprisingly that the TiO2 [rutile (110)] surface selectively adsorbed atmospheric carboxylic acids, which typically exist in only parts-per-billion concentrations. In this work, we used in situ sum-frequency vibrational spectroscopy to study the interaction between rutile (110) and typical VOC molecules, including formic acid, acetic acid, and formaldehyde. Spectra from all three adsorbed molecules on rutile (110) were similar to the rutile surface spectrum in the ambient atmosphere, showing a broad resonance near 2950 cm-1 that can be attributed to the bridging bidentate adsorption of corresponding compounds. In contrast, on a fused silica surface, a molecular monodentate adsorption configuration was observed for all the molecules, with aliphatic carbons appearing to be the dominant adventitious species.
期刊介绍:
The Journal of Chemical Physics publishes quantitative and rigorous science of long-lasting value in methods and applications of chemical physics. The Journal also publishes brief Communications of significant new findings, Perspectives on the latest advances in the field, and Special Topic issues. The Journal focuses on innovative research in experimental and theoretical areas of chemical physics, including spectroscopy, dynamics, kinetics, statistical mechanics, and quantum mechanics. In addition, topical areas such as polymers, soft matter, materials, surfaces/interfaces, and systems of biological relevance are of increasing importance.
Topical coverage includes:
Theoretical Methods and Algorithms
Advanced Experimental Techniques
Atoms, Molecules, and Clusters
Liquids, Glasses, and Crystals
Surfaces, Interfaces, and Materials
Polymers and Soft Matter
Biological Molecules and Networks.