MGA 功能缺失变体会导致卵巢早衰。

IF 13.3 1区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL Journal of Clinical Investigation Pub Date : 2024-11-15 DOI:10.1172/JCI183758
Shuyan Tang, Ting Guo, Chengcheng Song, Lingbo Wang, Jun Zhang, Aleksandar Rajkovic, Xiaoqi Lin, Shiling Chen, Yujun Liu, Weidong Tian, Bangguo Wu, Shixuan Wang, Wenwen Wang, Yunhui Lai, Ao Wang, Shuhua Xu, Li Jin, Hanni Ke, Shidou Zhao, Yan Li, Yingying Qin, Feng Zhang, Zi-Jiang Chen
{"title":"MGA 功能缺失变体会导致卵巢早衰。","authors":"Shuyan Tang, Ting Guo, Chengcheng Song, Lingbo Wang, Jun Zhang, Aleksandar Rajkovic, Xiaoqi Lin, Shiling Chen, Yujun Liu, Weidong Tian, Bangguo Wu, Shixuan Wang, Wenwen Wang, Yunhui Lai, Ao Wang, Shuhua Xu, Li Jin, Hanni Ke, Shidou Zhao, Yan Li, Yingying Qin, Feng Zhang, Zi-Jiang Chen","doi":"10.1172/JCI183758","DOIUrl":null,"url":null,"abstract":"<p><p>Although premature ovarian insufficiency (POI), a common cause of female infertility and subfertility, has a well-established hereditary component, the genetic factors currently implicated in POI account for only a limited proportion of cases. Here, using an exome-wide, gene-based case-control analysis in a discovery cohort comprising 1,027 POI cases and 2,733 ethnically matched women controls from China, we found that heterozygous loss-of-function (LoF) variants of MAX dimerization protein (MGA) were significantly enriched in the discovery cohort, accounting for 2.6% of POI cases, while no MGA LoF variants were found in the matched control females. Further exome screening was conducted in 4 additional POI cohorts (2 from China and 2 from the United States) for replication studies, and we identified heterozygous MGA LoF variants in 1.0%, 1.4%, 1.0%, and 1.0% of POI cases, respectively. Overall, a total of 37 distinct heterozygous MGA LoF variants were discovered in 38 POI cases, accounting for approximately 2.0% of the total 1,910 POI cases analyzed in this study. Accordingly, Mga+/- female mice were subfertile, exhibiting shorter reproductive lifespan and decreased follicle number compared with WT, mimicking the observed phenotype in humans. Our findings highlight the essential role of MGA deficiency for impaired female reproductive ability.</p>","PeriodicalId":15469,"journal":{"name":"Journal of Clinical Investigation","volume":"134 22","pages":""},"PeriodicalIF":13.3000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11563689/pdf/","citationCount":"0","resultStr":"{\"title\":\"MGA loss-of-function variants cause premature ovarian insufficiency.\",\"authors\":\"Shuyan Tang, Ting Guo, Chengcheng Song, Lingbo Wang, Jun Zhang, Aleksandar Rajkovic, Xiaoqi Lin, Shiling Chen, Yujun Liu, Weidong Tian, Bangguo Wu, Shixuan Wang, Wenwen Wang, Yunhui Lai, Ao Wang, Shuhua Xu, Li Jin, Hanni Ke, Shidou Zhao, Yan Li, Yingying Qin, Feng Zhang, Zi-Jiang Chen\",\"doi\":\"10.1172/JCI183758\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Although premature ovarian insufficiency (POI), a common cause of female infertility and subfertility, has a well-established hereditary component, the genetic factors currently implicated in POI account for only a limited proportion of cases. Here, using an exome-wide, gene-based case-control analysis in a discovery cohort comprising 1,027 POI cases and 2,733 ethnically matched women controls from China, we found that heterozygous loss-of-function (LoF) variants of MAX dimerization protein (MGA) were significantly enriched in the discovery cohort, accounting for 2.6% of POI cases, while no MGA LoF variants were found in the matched control females. Further exome screening was conducted in 4 additional POI cohorts (2 from China and 2 from the United States) for replication studies, and we identified heterozygous MGA LoF variants in 1.0%, 1.4%, 1.0%, and 1.0% of POI cases, respectively. Overall, a total of 37 distinct heterozygous MGA LoF variants were discovered in 38 POI cases, accounting for approximately 2.0% of the total 1,910 POI cases analyzed in this study. Accordingly, Mga+/- female mice were subfertile, exhibiting shorter reproductive lifespan and decreased follicle number compared with WT, mimicking the observed phenotype in humans. Our findings highlight the essential role of MGA deficiency for impaired female reproductive ability.</p>\",\"PeriodicalId\":15469,\"journal\":{\"name\":\"Journal of Clinical Investigation\",\"volume\":\"134 22\",\"pages\":\"\"},\"PeriodicalIF\":13.3000,\"publicationDate\":\"2024-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11563689/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Clinical Investigation\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1172/JCI183758\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Clinical Investigation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1172/JCI183758","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

卵巢早衰(POI)是导致女性不孕和不育的常见原因之一,虽然它具有公认的遗传因素,但目前与 POI 有关的遗传因素只占病例的有限比例。在此,我们对由1027例POI病例和2733名来自中国的种族匹配女性对照组成的发现队列进行了基于基因的全外显子组病例对照分析,发现MAX二聚化蛋白(MGA)的杂合子功能缺失(LoF)变异在发现队列中明显富集,占POI病例的2.6%,而在匹配对照女性中未发现MGA LoF变异。我们在另外 4 个 POI 队列(2 个来自中国,2 个来自美国)中进行了进一步的外显子组筛查,以进行复制研究,结果发现分别有 1.0%、1.4%、1.0% 和 1.0% 的 POI 病例存在杂合 MGA LoF 变异。总之,在 38 个 POI 病例中总共发现了 37 个不同的杂合 MGA LoF 变异,约占本研究分析的 1,910 个 POI 病例的 2.0%。因此,与 WT 小鼠相比,Mga+/- 雌性小鼠生育力低下,生殖寿命缩短,卵泡数量减少,与人类观察到的表型相似。我们的研究结果突显了MGA缺乏对雌性生殖能力受损的重要作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MGA loss-of-function variants cause premature ovarian insufficiency.

Although premature ovarian insufficiency (POI), a common cause of female infertility and subfertility, has a well-established hereditary component, the genetic factors currently implicated in POI account for only a limited proportion of cases. Here, using an exome-wide, gene-based case-control analysis in a discovery cohort comprising 1,027 POI cases and 2,733 ethnically matched women controls from China, we found that heterozygous loss-of-function (LoF) variants of MAX dimerization protein (MGA) were significantly enriched in the discovery cohort, accounting for 2.6% of POI cases, while no MGA LoF variants were found in the matched control females. Further exome screening was conducted in 4 additional POI cohorts (2 from China and 2 from the United States) for replication studies, and we identified heterozygous MGA LoF variants in 1.0%, 1.4%, 1.0%, and 1.0% of POI cases, respectively. Overall, a total of 37 distinct heterozygous MGA LoF variants were discovered in 38 POI cases, accounting for approximately 2.0% of the total 1,910 POI cases analyzed in this study. Accordingly, Mga+/- female mice were subfertile, exhibiting shorter reproductive lifespan and decreased follicle number compared with WT, mimicking the observed phenotype in humans. Our findings highlight the essential role of MGA deficiency for impaired female reproductive ability.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Clinical Investigation
Journal of Clinical Investigation 医学-医学:研究与实验
CiteScore
24.50
自引率
1.30%
发文量
1034
审稿时长
2 months
期刊介绍: The Journal of Clinical Investigation, established in 1924 by the ASCI, is a prestigious publication that focuses on breakthroughs in basic and clinical biomedical science, with the goal of advancing the field of medicine. With an impressive Impact Factor of 15.9 in 2022, it is recognized as one of the leading journals in the "Medicine, Research & Experimental" category of the Web of Science. The journal attracts a diverse readership from various medical disciplines and sectors. It publishes a wide range of research articles encompassing all biomedical specialties, including Autoimmunity, Gastroenterology, Immunology, Metabolism, Nephrology, Neuroscience, Oncology, Pulmonology, Vascular Biology, and many others. The Editorial Board consists of esteemed academic editors who possess extensive expertise in their respective fields. They are actively involved in research, ensuring the journal's high standards of publication and scientific rigor.
期刊最新文献
Mechanosensitive channels TMEM63A and TMEM63B mediate lung inflation-induced surfactant secretion. Ferroptosis of select skin epithelial cells initiates and maintains chronic systemic immune-mediated psoriatic disease. Mutations in unfolded protein response regulator ATF6 cause hearing and vision loss syndrome. An inducible RIPK3-driven necroptotic system enhances cancer cell-based immunotherapy and ensures safety. G-CSF resistance of ELANE mutant neutropenia depends on SERF1 containing truncated neutrophil elastase aggregates.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1