Xiujian Hu , Shengwei Cao , Mengtuo Wen , Yuanjing Zhang , Yuewen Zhao , Yaci Liu , Xiangke Kong , Yasong Li
{"title":"根据 DOM 和稳定同位素组成探索富营养化河口区的氮源和转化过程。","authors":"Xiujian Hu , Shengwei Cao , Mengtuo Wen , Yuanjing Zhang , Yuewen Zhao , Yaci Liu , Xiangke Kong , Yasong Li","doi":"10.1016/j.marpolbul.2024.117256","DOIUrl":null,"url":null,"abstract":"<div><div>Our study examines nitrogen sources and transformations in Xiamen Bay, where eutrophication has increased due to higher nitrogen levels. By analyzing dissolved organic matter (DOM) and nitrate stable isotopes (δ<sup>15</sup>N-NO<sub>3</sub><sup>−</sup>and δ<sup>18</sup>O-NO<sub>3</sub><sup>−</sup>), the study finds that nitrate in low salinity areas is influenced by freshwater-seawater mixing and biogeochemical processes, while in high salinity areas, it is mainly affected by physical mixing. Bayesian mixing model (MixSIAR) results show that the primary nitrate sources are fecal matter and sewage, followed by atmospheric deposition. During the high flow period, DOM may facilitate nitrogen transformation and release through processes such as degradation or mineralization. In contrast, during the low flow period, the system is mainly influenced by the physical mixing of saline and freshwater. Studies have shown that DOM can indicate the biogeochemical intensity in water bodies, further identifying the main factors influencing the distribution and transformation processes of nitrate content, providing a basis for mitigating eutrophication in estuarine areas.</div></div>","PeriodicalId":18215,"journal":{"name":"Marine pollution bulletin","volume":"209 ","pages":"Article 117256"},"PeriodicalIF":5.3000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploration of nitrogen sources and transformation processes in eutrophic estuarine zones based on DOM and stable isotope compositions\",\"authors\":\"Xiujian Hu , Shengwei Cao , Mengtuo Wen , Yuanjing Zhang , Yuewen Zhao , Yaci Liu , Xiangke Kong , Yasong Li\",\"doi\":\"10.1016/j.marpolbul.2024.117256\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Our study examines nitrogen sources and transformations in Xiamen Bay, where eutrophication has increased due to higher nitrogen levels. By analyzing dissolved organic matter (DOM) and nitrate stable isotopes (δ<sup>15</sup>N-NO<sub>3</sub><sup>−</sup>and δ<sup>18</sup>O-NO<sub>3</sub><sup>−</sup>), the study finds that nitrate in low salinity areas is influenced by freshwater-seawater mixing and biogeochemical processes, while in high salinity areas, it is mainly affected by physical mixing. Bayesian mixing model (MixSIAR) results show that the primary nitrate sources are fecal matter and sewage, followed by atmospheric deposition. During the high flow period, DOM may facilitate nitrogen transformation and release through processes such as degradation or mineralization. In contrast, during the low flow period, the system is mainly influenced by the physical mixing of saline and freshwater. Studies have shown that DOM can indicate the biogeochemical intensity in water bodies, further identifying the main factors influencing the distribution and transformation processes of nitrate content, providing a basis for mitigating eutrophication in estuarine areas.</div></div>\",\"PeriodicalId\":18215,\"journal\":{\"name\":\"Marine pollution bulletin\",\"volume\":\"209 \",\"pages\":\"Article 117256\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Marine pollution bulletin\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0025326X24012335\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine pollution bulletin","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0025326X24012335","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Exploration of nitrogen sources and transformation processes in eutrophic estuarine zones based on DOM and stable isotope compositions
Our study examines nitrogen sources and transformations in Xiamen Bay, where eutrophication has increased due to higher nitrogen levels. By analyzing dissolved organic matter (DOM) and nitrate stable isotopes (δ15N-NO3−and δ18O-NO3−), the study finds that nitrate in low salinity areas is influenced by freshwater-seawater mixing and biogeochemical processes, while in high salinity areas, it is mainly affected by physical mixing. Bayesian mixing model (MixSIAR) results show that the primary nitrate sources are fecal matter and sewage, followed by atmospheric deposition. During the high flow period, DOM may facilitate nitrogen transformation and release through processes such as degradation or mineralization. In contrast, during the low flow period, the system is mainly influenced by the physical mixing of saline and freshwater. Studies have shown that DOM can indicate the biogeochemical intensity in water bodies, further identifying the main factors influencing the distribution and transformation processes of nitrate content, providing a basis for mitigating eutrophication in estuarine areas.
期刊介绍:
Marine Pollution Bulletin is concerned with the rational use of maritime and marine resources in estuaries, the seas and oceans, as well as with documenting marine pollution and introducing new forms of measurement and analysis. A wide range of topics are discussed as news, comment, reviews and research reports, not only on effluent disposal and pollution control, but also on the management, economic aspects and protection of the marine environment in general.