Haojie Zou, Lei Wang, Xiaolu Zhou, Ling Zhang, Shida Wang, Qinghua Zheng, Ling Ye, Chenglin Wang
{"title":"用于临床前牙科教育的三维打印根尖屏障模型技术。","authors":"Haojie Zou, Lei Wang, Xiaolu Zhou, Ling Zhang, Shida Wang, Qinghua Zheng, Ling Ye, Chenglin Wang","doi":"10.3233/THC-241483","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Clinically, apical barrier procedure can be adopted to create an immediate artificial barrier for tooth with an open apex. Given that the quality of the barrier is crucial, the apical barrier procedure is known for its high technical sensitivity, posing significant learning challenges for dental students. Therefore, a new dental teaching model not only effectively enhances the future clinical skills of dental students but also benefits a wider range of patients.</p><p><strong>Objective: </strong>A new dental model for simulating apical barrier procedure in vitro, is helpful for dental students to practice apical barrier procedure. This study aims to design, assess, and evaluate the feasibility of a three-dimensional (3D) printed apical barrier model for pre-clinical dental education.</p><p><strong>Methods: </strong>A novel 3D-printed apical barrier model was developed, consisting of a tooth model and a matching blind box. Total 200 3D-printed apical barrier models were used to train dental students, and fifty fifth-year dental students participated in this voluntary hands-on course. Each student performed apical barrier procedures on four 3D-printed models. The outcome of the first model served as the representative result for the \"direct barrier group\", whereas the outcome of the fourth model represented the result of the \"post-training barrier group\". The quality of the apical barrier procedure was assessed through X-ray examination, and a questionnaire was used to evaluate the 3D-printed model's benefits, with scores ranging from 1 (strongly agree) to 5 (strongly disagree).</p><p><strong>Results: </strong>The overall rating for the 3D-printed model was 2.0 ± 0.6. The model was noted for its high degree of realism, ease of use, and practical applicability. Post-training assessments showed significant improvements in the density of apical barrier fillings (P< 0.05), reduction in underfilling rates (P< 0.05), and decrease in overfilling distances (P< 0.05). Students overwhelmingly agreed that the model was beneficial for training in apical barrier procedures (1.06 ± 0.24), helped identify their shortcomings (1.62 ± 0.53), and improved their operational skills (1.90 ± 0.51).</p><p><strong>Conclusions: </strong>Both the questionnaire feedback and the quality of the fillings confirmed the feasibility and efficacy of the 3D-printed apical barrier model for dental education. The students had the possibility to learn the correct apical barrier procedure on printed dental models.</p>","PeriodicalId":48978,"journal":{"name":"Technology and Health Care","volume":" ","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Three-dimensional printed apical barrier model technology for pre-clinical dental education.\",\"authors\":\"Haojie Zou, Lei Wang, Xiaolu Zhou, Ling Zhang, Shida Wang, Qinghua Zheng, Ling Ye, Chenglin Wang\",\"doi\":\"10.3233/THC-241483\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Clinically, apical barrier procedure can be adopted to create an immediate artificial barrier for tooth with an open apex. Given that the quality of the barrier is crucial, the apical barrier procedure is known for its high technical sensitivity, posing significant learning challenges for dental students. Therefore, a new dental teaching model not only effectively enhances the future clinical skills of dental students but also benefits a wider range of patients.</p><p><strong>Objective: </strong>A new dental model for simulating apical barrier procedure in vitro, is helpful for dental students to practice apical barrier procedure. This study aims to design, assess, and evaluate the feasibility of a three-dimensional (3D) printed apical barrier model for pre-clinical dental education.</p><p><strong>Methods: </strong>A novel 3D-printed apical barrier model was developed, consisting of a tooth model and a matching blind box. Total 200 3D-printed apical barrier models were used to train dental students, and fifty fifth-year dental students participated in this voluntary hands-on course. Each student performed apical barrier procedures on four 3D-printed models. The outcome of the first model served as the representative result for the \\\"direct barrier group\\\", whereas the outcome of the fourth model represented the result of the \\\"post-training barrier group\\\". The quality of the apical barrier procedure was assessed through X-ray examination, and a questionnaire was used to evaluate the 3D-printed model's benefits, with scores ranging from 1 (strongly agree) to 5 (strongly disagree).</p><p><strong>Results: </strong>The overall rating for the 3D-printed model was 2.0 ± 0.6. The model was noted for its high degree of realism, ease of use, and practical applicability. Post-training assessments showed significant improvements in the density of apical barrier fillings (P< 0.05), reduction in underfilling rates (P< 0.05), and decrease in overfilling distances (P< 0.05). Students overwhelmingly agreed that the model was beneficial for training in apical barrier procedures (1.06 ± 0.24), helped identify their shortcomings (1.62 ± 0.53), and improved their operational skills (1.90 ± 0.51).</p><p><strong>Conclusions: </strong>Both the questionnaire feedback and the quality of the fillings confirmed the feasibility and efficacy of the 3D-printed apical barrier model for dental education. The students had the possibility to learn the correct apical barrier procedure on printed dental models.</p>\",\"PeriodicalId\":48978,\"journal\":{\"name\":\"Technology and Health Care\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Technology and Health Care\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3233/THC-241483\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Technology and Health Care","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3233/THC-241483","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Three-dimensional printed apical barrier model technology for pre-clinical dental education.
Background: Clinically, apical barrier procedure can be adopted to create an immediate artificial barrier for tooth with an open apex. Given that the quality of the barrier is crucial, the apical barrier procedure is known for its high technical sensitivity, posing significant learning challenges for dental students. Therefore, a new dental teaching model not only effectively enhances the future clinical skills of dental students but also benefits a wider range of patients.
Objective: A new dental model for simulating apical barrier procedure in vitro, is helpful for dental students to practice apical barrier procedure. This study aims to design, assess, and evaluate the feasibility of a three-dimensional (3D) printed apical barrier model for pre-clinical dental education.
Methods: A novel 3D-printed apical barrier model was developed, consisting of a tooth model and a matching blind box. Total 200 3D-printed apical barrier models were used to train dental students, and fifty fifth-year dental students participated in this voluntary hands-on course. Each student performed apical barrier procedures on four 3D-printed models. The outcome of the first model served as the representative result for the "direct barrier group", whereas the outcome of the fourth model represented the result of the "post-training barrier group". The quality of the apical barrier procedure was assessed through X-ray examination, and a questionnaire was used to evaluate the 3D-printed model's benefits, with scores ranging from 1 (strongly agree) to 5 (strongly disagree).
Results: The overall rating for the 3D-printed model was 2.0 ± 0.6. The model was noted for its high degree of realism, ease of use, and practical applicability. Post-training assessments showed significant improvements in the density of apical barrier fillings (P< 0.05), reduction in underfilling rates (P< 0.05), and decrease in overfilling distances (P< 0.05). Students overwhelmingly agreed that the model was beneficial for training in apical barrier procedures (1.06 ± 0.24), helped identify their shortcomings (1.62 ± 0.53), and improved their operational skills (1.90 ± 0.51).
Conclusions: Both the questionnaire feedback and the quality of the fillings confirmed the feasibility and efficacy of the 3D-printed apical barrier model for dental education. The students had the possibility to learn the correct apical barrier procedure on printed dental models.
期刊介绍:
Technology and Health Care is intended to serve as a forum for the presentation of original articles and technical notes, observing rigorous scientific standards. Furthermore, upon invitation, reviews, tutorials, discussion papers and minisymposia are featured. The main focus of THC is related to the overlapping areas of engineering and medicine. The following types of contributions are considered:
1.Original articles: New concepts, procedures and devices associated with the use of technology in medical research and clinical practice are presented to a readership with a widespread background in engineering and/or medicine. In particular, the clinical benefit deriving from the application of engineering methods and devices in clinical medicine should be demonstrated. Typically, full length original contributions have a length of 4000 words, thereby taking duly into account figures and tables.
2.Technical Notes and Short Communications: Technical Notes relate to novel technical developments with relevance for clinical medicine. In Short Communications, clinical applications are shortly described. 3.Both Technical Notes and Short Communications typically have a length of 1500 words.
Reviews and Tutorials (upon invitation only): Tutorial and educational articles for persons with a primarily medical background on principles of engineering with particular significance for biomedical applications and vice versa are presented. The Editorial Board is responsible for the selection of topics.
4.Minisymposia (upon invitation only): Under the leadership of a Special Editor, controversial or important issues relating to health care are highlighted and discussed by various authors.
5.Letters to the Editors: Discussions or short statements (not indexed).