Liying Song , Zhiqiang Han , Po-Wan Shum , Woon-Ming Lau
{"title":"利用多重反射、量子级联激光、二维相关光谱和机器学习提升傅立叶变换红外光谱,从而提高血糖测试的准确性。","authors":"Liying Song , Zhiqiang Han , Po-Wan Shum , Woon-Ming Lau","doi":"10.1016/j.saa.2024.125400","DOIUrl":null,"url":null,"abstract":"<div><div>The accuracy of screening diabetes from non-diabetes is drastically enhanced by strategically upgrading the bench-marking infrared spectroscopy technique for non-invasive tests of blood-glucose, both with state-of-the-art instrumentation-retrofits and with intelligent spectral-datamining tools. First, the signal-to-noise performance of FTIR in measuring the spectral features of a glucose solution containing bovine serum albumin is improved by 2–3 times with the common single-pass attenuated total-reflection setup replaced by a multi-passes-reflections setup. Second, replacing the ordinary infrared lamp with a quantum cascade laser further improves the signal-to-noise by 3 times. The performance of the upgraded spectrometer in screening hyperglycemia is gauged by the accuracy of such screens derived from 100 repetitive spectral-measurements per glucose concentration, for 24 glucose concentrations spanning the range of 70–300 mg/dL, a range which covers the blood-glucose contents of all non-diabetic and diabetic human-subjects. Third, intelligent datamining methods are exploited to implement decision trees for screening hyperglycemia. Their decisions are mapped into a confusion matrix and the matrix-elements are used to calculate the accuracy merits of each method. Evidently, the accuracy of the multi-passes-FTIR with the standard principal-components datamining method is 80 %. The adoptions of the quantum cascade laser and two-dimensional correlation spectroscopy datamining technique raises this to 96.3 %. Finally, a novel machine learning method, which comprises three different decision-tree tools to generate trial screening decisions and a “majority-voting” datamining tool to reach a final screening decision, yields the best accuracy of 98.8 % ever reported in the literature.</div></div>","PeriodicalId":433,"journal":{"name":"Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy","volume":"327 ","pages":"Article 125400"},"PeriodicalIF":4.3000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing the accuracy of blood-glucose tests by upgrading FTIR with multiple-reflections, quantum cascade laser, two-dimensional correlation spectroscopy and machine learning\",\"authors\":\"Liying Song , Zhiqiang Han , Po-Wan Shum , Woon-Ming Lau\",\"doi\":\"10.1016/j.saa.2024.125400\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The accuracy of screening diabetes from non-diabetes is drastically enhanced by strategically upgrading the bench-marking infrared spectroscopy technique for non-invasive tests of blood-glucose, both with state-of-the-art instrumentation-retrofits and with intelligent spectral-datamining tools. First, the signal-to-noise performance of FTIR in measuring the spectral features of a glucose solution containing bovine serum albumin is improved by 2–3 times with the common single-pass attenuated total-reflection setup replaced by a multi-passes-reflections setup. Second, replacing the ordinary infrared lamp with a quantum cascade laser further improves the signal-to-noise by 3 times. The performance of the upgraded spectrometer in screening hyperglycemia is gauged by the accuracy of such screens derived from 100 repetitive spectral-measurements per glucose concentration, for 24 glucose concentrations spanning the range of 70–300 mg/dL, a range which covers the blood-glucose contents of all non-diabetic and diabetic human-subjects. Third, intelligent datamining methods are exploited to implement decision trees for screening hyperglycemia. Their decisions are mapped into a confusion matrix and the matrix-elements are used to calculate the accuracy merits of each method. Evidently, the accuracy of the multi-passes-FTIR with the standard principal-components datamining method is 80 %. The adoptions of the quantum cascade laser and two-dimensional correlation spectroscopy datamining technique raises this to 96.3 %. Finally, a novel machine learning method, which comprises three different decision-tree tools to generate trial screening decisions and a “majority-voting” datamining tool to reach a final screening decision, yields the best accuracy of 98.8 % ever reported in the literature.</div></div>\",\"PeriodicalId\":433,\"journal\":{\"name\":\"Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy\",\"volume\":\"327 \",\"pages\":\"Article 125400\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S138614252401566X\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"SPECTROSCOPY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S138614252401566X","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SPECTROSCOPY","Score":null,"Total":0}
Enhancing the accuracy of blood-glucose tests by upgrading FTIR with multiple-reflections, quantum cascade laser, two-dimensional correlation spectroscopy and machine learning
The accuracy of screening diabetes from non-diabetes is drastically enhanced by strategically upgrading the bench-marking infrared spectroscopy technique for non-invasive tests of blood-glucose, both with state-of-the-art instrumentation-retrofits and with intelligent spectral-datamining tools. First, the signal-to-noise performance of FTIR in measuring the spectral features of a glucose solution containing bovine serum albumin is improved by 2–3 times with the common single-pass attenuated total-reflection setup replaced by a multi-passes-reflections setup. Second, replacing the ordinary infrared lamp with a quantum cascade laser further improves the signal-to-noise by 3 times. The performance of the upgraded spectrometer in screening hyperglycemia is gauged by the accuracy of such screens derived from 100 repetitive spectral-measurements per glucose concentration, for 24 glucose concentrations spanning the range of 70–300 mg/dL, a range which covers the blood-glucose contents of all non-diabetic and diabetic human-subjects. Third, intelligent datamining methods are exploited to implement decision trees for screening hyperglycemia. Their decisions are mapped into a confusion matrix and the matrix-elements are used to calculate the accuracy merits of each method. Evidently, the accuracy of the multi-passes-FTIR with the standard principal-components datamining method is 80 %. The adoptions of the quantum cascade laser and two-dimensional correlation spectroscopy datamining technique raises this to 96.3 %. Finally, a novel machine learning method, which comprises three different decision-tree tools to generate trial screening decisions and a “majority-voting” datamining tool to reach a final screening decision, yields the best accuracy of 98.8 % ever reported in the literature.
期刊介绍:
Spectrochimica Acta, Part A: Molecular and Biomolecular Spectroscopy (SAA) is an interdisciplinary journal which spans from basic to applied aspects of optical spectroscopy in chemistry, medicine, biology, and materials science.
The journal publishes original scientific papers that feature high-quality spectroscopic data and analysis. From the broad range of optical spectroscopies, the emphasis is on electronic, vibrational or rotational spectra of molecules, rather than on spectroscopy based on magnetic moments.
Criteria for publication in SAA are novelty, uniqueness, and outstanding quality. Routine applications of spectroscopic techniques and computational methods are not appropriate.
Topics of particular interest of Spectrochimica Acta Part A include, but are not limited to:
Spectroscopy and dynamics of bioanalytical, biomedical, environmental, and atmospheric sciences,
Novel experimental techniques or instrumentation for molecular spectroscopy,
Novel theoretical and computational methods,
Novel applications in photochemistry and photobiology,
Novel interpretational approaches as well as advances in data analysis based on electronic or vibrational spectroscopy.