利用多重反射、量子级联激光、二维相关光谱和机器学习提升傅立叶变换红外光谱,从而提高血糖测试的准确性。

Liying Song , Zhiqiang Han , Po-Wan Shum , Woon-Ming Lau
{"title":"利用多重反射、量子级联激光、二维相关光谱和机器学习提升傅立叶变换红外光谱,从而提高血糖测试的准确性。","authors":"Liying Song ,&nbsp;Zhiqiang Han ,&nbsp;Po-Wan Shum ,&nbsp;Woon-Ming Lau","doi":"10.1016/j.saa.2024.125400","DOIUrl":null,"url":null,"abstract":"<div><div>The accuracy of screening diabetes from non-diabetes is drastically enhanced by strategically upgrading the bench-marking infrared spectroscopy technique for non-invasive tests of blood-glucose, both with state-of-the-art instrumentation-retrofits and with intelligent spectral-datamining tools. First, the signal-to-noise performance of FTIR in measuring the spectral features of a glucose solution containing bovine serum albumin is improved by 2–3 times with the common single-pass attenuated total-reflection setup replaced by a multi-passes-reflections setup. Second, replacing the ordinary infrared lamp with a quantum cascade laser further improves the signal-to-noise by 3 times. The performance of the upgraded spectrometer in screening hyperglycemia is gauged by the accuracy of such screens derived from 100 repetitive spectral-measurements per glucose concentration, for 24 glucose concentrations spanning the range of 70–300 mg/dL, a range which covers the blood-glucose contents of all non-diabetic and diabetic human-subjects. Third, intelligent datamining methods are exploited to implement decision trees for screening hyperglycemia. Their decisions are mapped into a confusion matrix and the matrix-elements are used to calculate the accuracy merits of each method. Evidently, the accuracy of the multi-passes-FTIR with the standard principal-components datamining method is 80 %. The adoptions of the quantum cascade laser and two-dimensional correlation spectroscopy datamining technique raises this to 96.3 %. Finally, a novel machine learning method, which comprises three different decision-tree tools to generate trial screening decisions and a “majority-voting” datamining tool to reach a final screening decision, yields the best accuracy of 98.8 % ever reported in the literature.</div></div>","PeriodicalId":433,"journal":{"name":"Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy","volume":"327 ","pages":"Article 125400"},"PeriodicalIF":4.3000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing the accuracy of blood-glucose tests by upgrading FTIR with multiple-reflections, quantum cascade laser, two-dimensional correlation spectroscopy and machine learning\",\"authors\":\"Liying Song ,&nbsp;Zhiqiang Han ,&nbsp;Po-Wan Shum ,&nbsp;Woon-Ming Lau\",\"doi\":\"10.1016/j.saa.2024.125400\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The accuracy of screening diabetes from non-diabetes is drastically enhanced by strategically upgrading the bench-marking infrared spectroscopy technique for non-invasive tests of blood-glucose, both with state-of-the-art instrumentation-retrofits and with intelligent spectral-datamining tools. First, the signal-to-noise performance of FTIR in measuring the spectral features of a glucose solution containing bovine serum albumin is improved by 2–3 times with the common single-pass attenuated total-reflection setup replaced by a multi-passes-reflections setup. Second, replacing the ordinary infrared lamp with a quantum cascade laser further improves the signal-to-noise by 3 times. The performance of the upgraded spectrometer in screening hyperglycemia is gauged by the accuracy of such screens derived from 100 repetitive spectral-measurements per glucose concentration, for 24 glucose concentrations spanning the range of 70–300 mg/dL, a range which covers the blood-glucose contents of all non-diabetic and diabetic human-subjects. Third, intelligent datamining methods are exploited to implement decision trees for screening hyperglycemia. Their decisions are mapped into a confusion matrix and the matrix-elements are used to calculate the accuracy merits of each method. Evidently, the accuracy of the multi-passes-FTIR with the standard principal-components datamining method is 80 %. The adoptions of the quantum cascade laser and two-dimensional correlation spectroscopy datamining technique raises this to 96.3 %. Finally, a novel machine learning method, which comprises three different decision-tree tools to generate trial screening decisions and a “majority-voting” datamining tool to reach a final screening decision, yields the best accuracy of 98.8 % ever reported in the literature.</div></div>\",\"PeriodicalId\":433,\"journal\":{\"name\":\"Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy\",\"volume\":\"327 \",\"pages\":\"Article 125400\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S138614252401566X\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"SPECTROSCOPY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S138614252401566X","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SPECTROSCOPY","Score":null,"Total":0}
引用次数: 0

摘要

通过对用于无创血糖检测的基准红外光谱技术进行战略性升级,采用最先进的仪器改造和智能光谱数据挖掘工具,大大提高了从非糖尿病中筛查糖尿病的准确性。首先,用多通道反射装置取代普通的单通道衰减全反射装置后,傅立叶变换红外光谱在测量含有牛血清白蛋白的葡萄糖溶液光谱特征时的信噪比性能提高了 2-3 倍。其次,用量子级联激光器取代普通红外灯后,信噪比进一步提高了 3 倍。升级后的光谱仪在筛查高血糖症方面的性能是通过对每种葡萄糖浓度进行 100 次重复光谱测量得出的筛查准确度来衡量的,测量的葡萄糖浓度范围为 70-300 mg/dL,涵盖了所有非糖尿病和糖尿病人体受试者的血糖含量。第三,利用智能数据挖掘方法实施决策树,以筛查高血糖。它们的决策被映射到混淆矩阵中,矩阵元素被用来计算每种方法的准确性。显然,采用标准主成分数据挖掘方法的多通道傅立叶变换红外光谱法的准确率为 80%。采用量子级联激光和二维相关光谱数据挖掘技术后,准确率提高到 96.3%。最后,一种新颖的机器学习方法由三种不同的决策树工具组成,用于生成试验筛选决定,并由一种 "多数投票 "数据挖掘工具得出最终筛选决定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Enhancing the accuracy of blood-glucose tests by upgrading FTIR with multiple-reflections, quantum cascade laser, two-dimensional correlation spectroscopy and machine learning
The accuracy of screening diabetes from non-diabetes is drastically enhanced by strategically upgrading the bench-marking infrared spectroscopy technique for non-invasive tests of blood-glucose, both with state-of-the-art instrumentation-retrofits and with intelligent spectral-datamining tools. First, the signal-to-noise performance of FTIR in measuring the spectral features of a glucose solution containing bovine serum albumin is improved by 2–3 times with the common single-pass attenuated total-reflection setup replaced by a multi-passes-reflections setup. Second, replacing the ordinary infrared lamp with a quantum cascade laser further improves the signal-to-noise by 3 times. The performance of the upgraded spectrometer in screening hyperglycemia is gauged by the accuracy of such screens derived from 100 repetitive spectral-measurements per glucose concentration, for 24 glucose concentrations spanning the range of 70–300 mg/dL, a range which covers the blood-glucose contents of all non-diabetic and diabetic human-subjects. Third, intelligent datamining methods are exploited to implement decision trees for screening hyperglycemia. Their decisions are mapped into a confusion matrix and the matrix-elements are used to calculate the accuracy merits of each method. Evidently, the accuracy of the multi-passes-FTIR with the standard principal-components datamining method is 80 %. The adoptions of the quantum cascade laser and two-dimensional correlation spectroscopy datamining technique raises this to 96.3 %. Finally, a novel machine learning method, which comprises three different decision-tree tools to generate trial screening decisions and a “majority-voting” datamining tool to reach a final screening decision, yields the best accuracy of 98.8 % ever reported in the literature.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.40
自引率
11.40%
发文量
1364
审稿时长
40 days
期刊介绍: Spectrochimica Acta, Part A: Molecular and Biomolecular Spectroscopy (SAA) is an interdisciplinary journal which spans from basic to applied aspects of optical spectroscopy in chemistry, medicine, biology, and materials science. The journal publishes original scientific papers that feature high-quality spectroscopic data and analysis. From the broad range of optical spectroscopies, the emphasis is on electronic, vibrational or rotational spectra of molecules, rather than on spectroscopy based on magnetic moments. Criteria for publication in SAA are novelty, uniqueness, and outstanding quality. Routine applications of spectroscopic techniques and computational methods are not appropriate. Topics of particular interest of Spectrochimica Acta Part A include, but are not limited to: Spectroscopy and dynamics of bioanalytical, biomedical, environmental, and atmospheric sciences, Novel experimental techniques or instrumentation for molecular spectroscopy, Novel theoretical and computational methods, Novel applications in photochemistry and photobiology, Novel interpretational approaches as well as advances in data analysis based on electronic or vibrational spectroscopy.
期刊最新文献
A BODIPY-based “turn on” near-infrared fluorescence probe for specific detection of cysteine A rapid dual-mode SERS/FL cytosensor assisted via DNA Walker-based plasmonic nanostructures Luminescent Tb3+/Sm3+ co-doped hydroxyapatite nanoparticles as an imaging probe in N2a cells Multimodal fish maw type recognition based on Wasserstein generative adversarial network combined with gradient penalty and spectral fusion Plasma treated bimetallic nanofibers as sensitive SERS platform and deep learning model for detection and classification of antibiotics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1