{"title":"构建和优化生产活性非天然人参皂苷 3β-O-Glc2-DM 的酵母细胞工厂","authors":"Yanxin Li, Xiaoyan Sun, Yanxin Liu, Hua Sun, Chen Zhou, Yu Peng, Ting Gong, Jingjing Chen, Tianjiao Chen, Jinling Yang* and Ping Zhu*, ","doi":"10.1021/acssynbio.4c0049410.1021/acssynbio.4c00494","DOIUrl":null,"url":null,"abstract":"<p >Ginsenosides are major active components of <i>Panax ginseng</i>, which are generally glycosylated at C3–OH and/or C20–OH of protopanaxadiol (PPD) and C6–OH and/or C20–OH of protopanaxatriol. However, the glucosides of dammarenediol-II (DM), which is the direct precursor of PPD, have scarcely been separated from <i>P. ginseng</i>. Because different positions and numbers of the hydroxyl and glycosyl groups lead to a diversity of structure and function of the ginsenosides, it can be inferred that DM glucosides may have different pharmacological activities compared with natural ginsenosides. Herein, we first constructed the cell factory for <i>de novo</i> biosynthesis of 3-<i>O</i>-(β-<i>D</i>-glucopyranosyl-(1→2)-β-<i>D</i>-glucopyranosyl)-dammar-24-ene-3β,20<i>S</i>-diol (3β-<i>O</i>-Glc<sup>2</sup>-DM) by introducing the codon-optimized genes encoding dammarenediol-II synthase, two UDP-glycosyltransferases (UGTs) including UGT74AC1-M7 from <i>Siraitia grosvenorii</i> and UGTPg29 from <i>P. ginseng</i> in <i>Saccharomyces cerevisiae</i> via the CRISPR/Cas9 system. The titer of 3β-<i>O</i>-Glc<sup>2</sup>-DM was then increased from 18.9 to 148.0 mg/L by several metabolic engineering strategies including overexpressing the rate-limiting enzymes of triterpenoid biosynthesis, balancing carbon flux of biosynthetic pathways of triterpenoid and ergosterol, and engineering endoplasmic reticulum. Furthermore, the 3β-<i>O</i>-Glc<sup>2</sup>-DM titer of 766.3 mg/L was achieved through fed-batch fermentation in a 3-L bioreactor. Finally, <i>in vitro</i> assays demonstrated that 3β-<i>O</i>-Glc<sup>2</sup>-DM exhibited a protective effect on H/R-induced cardiomyocyte damage. This work provides a feasible approach for production of 3β-<i>O</i>-Glc<sup>2</sup>-DM as a potential cardioprotective drug candidate.</p>","PeriodicalId":26,"journal":{"name":"ACS Synthetic Biology","volume":"13 11","pages":"3677–3685 3677–3685"},"PeriodicalIF":3.7000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Construction and Optimization of a Yeast Cell Factory for Producing Active Unnatural Ginsenoside 3β-O-Glc2-DM\",\"authors\":\"Yanxin Li, Xiaoyan Sun, Yanxin Liu, Hua Sun, Chen Zhou, Yu Peng, Ting Gong, Jingjing Chen, Tianjiao Chen, Jinling Yang* and Ping Zhu*, \",\"doi\":\"10.1021/acssynbio.4c0049410.1021/acssynbio.4c00494\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Ginsenosides are major active components of <i>Panax ginseng</i>, which are generally glycosylated at C3–OH and/or C20–OH of protopanaxadiol (PPD) and C6–OH and/or C20–OH of protopanaxatriol. However, the glucosides of dammarenediol-II (DM), which is the direct precursor of PPD, have scarcely been separated from <i>P. ginseng</i>. Because different positions and numbers of the hydroxyl and glycosyl groups lead to a diversity of structure and function of the ginsenosides, it can be inferred that DM glucosides may have different pharmacological activities compared with natural ginsenosides. Herein, we first constructed the cell factory for <i>de novo</i> biosynthesis of 3-<i>O</i>-(β-<i>D</i>-glucopyranosyl-(1→2)-β-<i>D</i>-glucopyranosyl)-dammar-24-ene-3β,20<i>S</i>-diol (3β-<i>O</i>-Glc<sup>2</sup>-DM) by introducing the codon-optimized genes encoding dammarenediol-II synthase, two UDP-glycosyltransferases (UGTs) including UGT74AC1-M7 from <i>Siraitia grosvenorii</i> and UGTPg29 from <i>P. ginseng</i> in <i>Saccharomyces cerevisiae</i> via the CRISPR/Cas9 system. The titer of 3β-<i>O</i>-Glc<sup>2</sup>-DM was then increased from 18.9 to 148.0 mg/L by several metabolic engineering strategies including overexpressing the rate-limiting enzymes of triterpenoid biosynthesis, balancing carbon flux of biosynthetic pathways of triterpenoid and ergosterol, and engineering endoplasmic reticulum. Furthermore, the 3β-<i>O</i>-Glc<sup>2</sup>-DM titer of 766.3 mg/L was achieved through fed-batch fermentation in a 3-L bioreactor. Finally, <i>in vitro</i> assays demonstrated that 3β-<i>O</i>-Glc<sup>2</sup>-DM exhibited a protective effect on H/R-induced cardiomyocyte damage. This work provides a feasible approach for production of 3β-<i>O</i>-Glc<sup>2</sup>-DM as a potential cardioprotective drug candidate.</p>\",\"PeriodicalId\":26,\"journal\":{\"name\":\"ACS Synthetic Biology\",\"volume\":\"13 11\",\"pages\":\"3677–3685 3677–3685\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Synthetic Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acssynbio.4c00494\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Synthetic Biology","FirstCategoryId":"99","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acssynbio.4c00494","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Construction and Optimization of a Yeast Cell Factory for Producing Active Unnatural Ginsenoside 3β-O-Glc2-DM
Ginsenosides are major active components of Panax ginseng, which are generally glycosylated at C3–OH and/or C20–OH of protopanaxadiol (PPD) and C6–OH and/or C20–OH of protopanaxatriol. However, the glucosides of dammarenediol-II (DM), which is the direct precursor of PPD, have scarcely been separated from P. ginseng. Because different positions and numbers of the hydroxyl and glycosyl groups lead to a diversity of structure and function of the ginsenosides, it can be inferred that DM glucosides may have different pharmacological activities compared with natural ginsenosides. Herein, we first constructed the cell factory for de novo biosynthesis of 3-O-(β-D-glucopyranosyl-(1→2)-β-D-glucopyranosyl)-dammar-24-ene-3β,20S-diol (3β-O-Glc2-DM) by introducing the codon-optimized genes encoding dammarenediol-II synthase, two UDP-glycosyltransferases (UGTs) including UGT74AC1-M7 from Siraitia grosvenorii and UGTPg29 from P. ginseng in Saccharomyces cerevisiae via the CRISPR/Cas9 system. The titer of 3β-O-Glc2-DM was then increased from 18.9 to 148.0 mg/L by several metabolic engineering strategies including overexpressing the rate-limiting enzymes of triterpenoid biosynthesis, balancing carbon flux of biosynthetic pathways of triterpenoid and ergosterol, and engineering endoplasmic reticulum. Furthermore, the 3β-O-Glc2-DM titer of 766.3 mg/L was achieved through fed-batch fermentation in a 3-L bioreactor. Finally, in vitro assays demonstrated that 3β-O-Glc2-DM exhibited a protective effect on H/R-induced cardiomyocyte damage. This work provides a feasible approach for production of 3β-O-Glc2-DM as a potential cardioprotective drug candidate.
期刊介绍:
The journal is particularly interested in studies on the design and synthesis of new genetic circuits and gene products; computational methods in the design of systems; and integrative applied approaches to understanding disease and metabolism.
Topics may include, but are not limited to:
Design and optimization of genetic systems
Genetic circuit design and their principles for their organization into programs
Computational methods to aid the design of genetic systems
Experimental methods to quantify genetic parts, circuits, and metabolic fluxes
Genetic parts libraries: their creation, analysis, and ontological representation
Protein engineering including computational design
Metabolic engineering and cellular manufacturing, including biomass conversion
Natural product access, engineering, and production
Creative and innovative applications of cellular programming
Medical applications, tissue engineering, and the programming of therapeutic cells
Minimal cell design and construction
Genomics and genome replacement strategies
Viral engineering
Automated and robotic assembly platforms for synthetic biology
DNA synthesis methodologies
Metagenomics and synthetic metagenomic analysis
Bioinformatics applied to gene discovery, chemoinformatics, and pathway construction
Gene optimization
Methods for genome-scale measurements of transcription and metabolomics
Systems biology and methods to integrate multiple data sources
in vitro and cell-free synthetic biology and molecular programming
Nucleic acid engineering.