封面特写:电纺丝准复合聚合物电解质与水氧填充铝硅酸盐沸石网络用于无枝晶锂金属电池(电池与超级电容器 11/2024)

IF 5.1 4区 材料科学 Q2 ELECTROCHEMISTRY Batteries & Supercaps Pub Date : 2024-11-12 DOI:10.1002/batt.202481103
Jenny Johnson, Sajan Raj Sasirajan Littleflower, Kumaran Vediappan, Helen Annal Therese
{"title":"封面特写:电纺丝准复合聚合物电解质与水氧填充铝硅酸盐沸石网络用于无枝晶锂金属电池(电池与超级电容器 11/2024)","authors":"Jenny Johnson,&nbsp;Sajan Raj Sasirajan Littleflower,&nbsp;Kumaran Vediappan,&nbsp;Helen Annal Therese","doi":"10.1002/batt.202481103","DOIUrl":null,"url":null,"abstract":"<p><b>The Cover Feature</b> illustrates the stable performance of a PVA-based quasi-solid polymer electrolyte. The fast lithium ion movement through the inter- and intra-crystalline pores of the zeolitic pathway enables stable lithium ion flux at the solid electrolyte interface, thus allowing the system to operate even at a high current density of 100 mA cm<sup>−2</sup> without dendrite formation. More information can be found in the Research Article by H. Annal Therese and co-workers (DOI: 10.1002/batt.202400299).\n <figure>\n <div><picture>\n <source></source></picture><p></p>\n </div>\n </figure>\n </p>","PeriodicalId":132,"journal":{"name":"Batteries & Supercaps","volume":"7 11","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/batt.202481103","citationCount":"0","resultStr":"{\"title\":\"Cover Feature: Electrospun Quasi-Composite Polymer Electrolyte with Hydoxyl-Anchored Aluminosilicate Zeolitic Network for Dendrite Free Lithium Metal Batteries (Batteries & Supercaps 11/2024)\",\"authors\":\"Jenny Johnson,&nbsp;Sajan Raj Sasirajan Littleflower,&nbsp;Kumaran Vediappan,&nbsp;Helen Annal Therese\",\"doi\":\"10.1002/batt.202481103\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><b>The Cover Feature</b> illustrates the stable performance of a PVA-based quasi-solid polymer electrolyte. The fast lithium ion movement through the inter- and intra-crystalline pores of the zeolitic pathway enables stable lithium ion flux at the solid electrolyte interface, thus allowing the system to operate even at a high current density of 100 mA cm<sup>−2</sup> without dendrite formation. More information can be found in the Research Article by H. Annal Therese and co-workers (DOI: 10.1002/batt.202400299).\\n <figure>\\n <div><picture>\\n <source></source></picture><p></p>\\n </div>\\n </figure>\\n </p>\",\"PeriodicalId\":132,\"journal\":{\"name\":\"Batteries & Supercaps\",\"volume\":\"7 11\",\"pages\":\"\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2024-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/batt.202481103\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Batteries & Supercaps\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/batt.202481103\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Batteries & Supercaps","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/batt.202481103","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

摘要

封面特写展示了基于 PVA 的准固体聚合物电解质的稳定性能。锂离子在沸石通路的晶间孔隙和晶内孔隙中快速移动,使固体电解质界面上的锂离子通量保持稳定,从而使系统能够在 100 mA cm-2 的高电流密度下运行,且不会形成枝晶。更多信息,请参阅 H. Annal Therese 及其合作者的研究文章(DOI: 10.1002/batt.202400299)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Cover Feature: Electrospun Quasi-Composite Polymer Electrolyte with Hydoxyl-Anchored Aluminosilicate Zeolitic Network for Dendrite Free Lithium Metal Batteries (Batteries & Supercaps 11/2024)

The Cover Feature illustrates the stable performance of a PVA-based quasi-solid polymer electrolyte. The fast lithium ion movement through the inter- and intra-crystalline pores of the zeolitic pathway enables stable lithium ion flux at the solid electrolyte interface, thus allowing the system to operate even at a high current density of 100 mA cm−2 without dendrite formation. More information can be found in the Research Article by H. Annal Therese and co-workers (DOI: 10.1002/batt.202400299).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.60
自引率
5.30%
发文量
223
期刊介绍: Electrochemical energy storage devices play a transformative role in our societies. They have allowed the emergence of portable electronics devices, have triggered the resurgence of electric transportation and constitute key components in smart power grids. Batteries & Supercaps publishes international high-impact experimental and theoretical research on the fundamentals and applications of electrochemical energy storage. We support the scientific community to advance energy efficiency and sustainability.
期刊最新文献
Cover Feature: Electrospun Quasi-Composite Polymer Electrolyte with Hydoxyl-Anchored Aluminosilicate Zeolitic Network for Dendrite Free Lithium Metal Batteries (Batteries & Supercaps 11/2024) Cover Picture: Enhancing the Supercapacitive Behaviour of Cobalt Layered Hydroxides by 3D Structuring and Halide Substitution (Batteries & Supercaps 11/2024) Cover Feature: Metal-Organic Framework Materials as Bifunctional Electrocatalyst for Rechargeable Zn-Air Batteries (Batteries & Supercaps 11/2024) Cover Picture: Ethanol-Based Solution Synthesis of a Functionalized Sulfide Solid Electrolyte: Investigation and Application (Batteries & Supercaps 10/2024) Cover Feature: Can Prussian Blue Analogues be Holy Grail for Advancing Post-Lithium Batteries? (Batteries & Supercaps 10/2024)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1