Chenyuan Cui, Liting Zhang, Fujian Xie, Chunmei Zhu, Assoc. Prof. Bo Yu
{"title":"三元镁铝铁层双氢氧化物:光催化降解中的合成、表征和应用","authors":"Chenyuan Cui, Liting Zhang, Fujian Xie, Chunmei Zhu, Assoc. Prof. Bo Yu","doi":"10.1002/slct.202403096","DOIUrl":null,"url":null,"abstract":"<p>In this study, MgAlFe-layered double hydroxide (LDH) was prepared using the co-precipitation method, and its performance as a photocatalyst for methylene blue (MB) degradation was evaluated. XRD and FTIR analyses confirmed the crystalline structure and successful incorporation of Al into the LDH layers. SEM and TEM images revealed a uniform morphology and layered structure and UV–vis DRS analysis showed that MgAlFe-LDH has an appropriate band gap for visible light absorption. Photoluminescence studies indicated good charge separation, reducing electron-hole recombination and enhancing photocatalytic performance. The effects of the Mg/Al/Fe molar ratio, illumination time, catalyst dosage, MB concentration, and pH on the degradation efficiency were examined. Optimized conditions of Mg/Al/Fe molar ratio 3:0.9:0.1, 180 min illumination, 10 mg L⁻¹ catalyst, 20 mg L⁻¹ MB, and pH 13 yielded a remarkable 90.4% MB degradation efficiency. The primary active species in the photocatalytic reaction were identified as hydroxyl radicals (<b>·</b>OH) and holes (h⁺). The incorporation of ternary LDH enhances the photocatalytic performance due to its high stability, versatility, and ability to integrate multiple metal cations. This study broadens the application of LDH in treating organic dye wastewater and provides new insights into the photocatalytic degradation of MB.</p>","PeriodicalId":146,"journal":{"name":"ChemistrySelect","volume":"9 43","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ternary MgAlFe-Layered Double Hydroxide: Synthesis, Characterization, and Application in Photocatalytic Degradation\",\"authors\":\"Chenyuan Cui, Liting Zhang, Fujian Xie, Chunmei Zhu, Assoc. Prof. Bo Yu\",\"doi\":\"10.1002/slct.202403096\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this study, MgAlFe-layered double hydroxide (LDH) was prepared using the co-precipitation method, and its performance as a photocatalyst for methylene blue (MB) degradation was evaluated. XRD and FTIR analyses confirmed the crystalline structure and successful incorporation of Al into the LDH layers. SEM and TEM images revealed a uniform morphology and layered structure and UV–vis DRS analysis showed that MgAlFe-LDH has an appropriate band gap for visible light absorption. Photoluminescence studies indicated good charge separation, reducing electron-hole recombination and enhancing photocatalytic performance. The effects of the Mg/Al/Fe molar ratio, illumination time, catalyst dosage, MB concentration, and pH on the degradation efficiency were examined. Optimized conditions of Mg/Al/Fe molar ratio 3:0.9:0.1, 180 min illumination, 10 mg L⁻¹ catalyst, 20 mg L⁻¹ MB, and pH 13 yielded a remarkable 90.4% MB degradation efficiency. The primary active species in the photocatalytic reaction were identified as hydroxyl radicals (<b>·</b>OH) and holes (h⁺). The incorporation of ternary LDH enhances the photocatalytic performance due to its high stability, versatility, and ability to integrate multiple metal cations. This study broadens the application of LDH in treating organic dye wastewater and provides new insights into the photocatalytic degradation of MB.</p>\",\"PeriodicalId\":146,\"journal\":{\"name\":\"ChemistrySelect\",\"volume\":\"9 43\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemistrySelect\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/slct.202403096\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemistrySelect","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/slct.202403096","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Ternary MgAlFe-Layered Double Hydroxide: Synthesis, Characterization, and Application in Photocatalytic Degradation
In this study, MgAlFe-layered double hydroxide (LDH) was prepared using the co-precipitation method, and its performance as a photocatalyst for methylene blue (MB) degradation was evaluated. XRD and FTIR analyses confirmed the crystalline structure and successful incorporation of Al into the LDH layers. SEM and TEM images revealed a uniform morphology and layered structure and UV–vis DRS analysis showed that MgAlFe-LDH has an appropriate band gap for visible light absorption. Photoluminescence studies indicated good charge separation, reducing electron-hole recombination and enhancing photocatalytic performance. The effects of the Mg/Al/Fe molar ratio, illumination time, catalyst dosage, MB concentration, and pH on the degradation efficiency were examined. Optimized conditions of Mg/Al/Fe molar ratio 3:0.9:0.1, 180 min illumination, 10 mg L⁻¹ catalyst, 20 mg L⁻¹ MB, and pH 13 yielded a remarkable 90.4% MB degradation efficiency. The primary active species in the photocatalytic reaction were identified as hydroxyl radicals (·OH) and holes (h⁺). The incorporation of ternary LDH enhances the photocatalytic performance due to its high stability, versatility, and ability to integrate multiple metal cations. This study broadens the application of LDH in treating organic dye wastewater and provides new insights into the photocatalytic degradation of MB.
期刊介绍:
ChemistrySelect is the latest journal from ChemPubSoc Europe and Wiley-VCH. It offers researchers a quality society-owned journal in which to publish their work in all areas of chemistry. Manuscripts are evaluated by active researchers to ensure they add meaningfully to the scientific literature, and those accepted are processed quickly to ensure rapid online publication.