{"title":"乙醇、二氧化硫和过渡金属对低醇和无醇模型葡萄酒褐变动力学的影响","authors":"Yogesh Kumar, Arianna Ricci, Guanghao Wang, Giuseppina Paola Parpinello, Andrea Versari","doi":"10.1155/2024/2318470","DOIUrl":null,"url":null,"abstract":"<div>\n <p>The study delved into the rate of browning (A<sub>420</sub> nm) within a model wine solution, aiming to elucidate mechanisms impacting real product scenarios, including low- and no-alcohol wines. The model wine solutions were prepared by adding tartaric acid, caffeic acid, and catechin into an aqueous ethanol solution containing transition metals (iron [Fe] and copper [Cu]) along with sulfur dioxide (SO<sub>2</sub>). The results indicated that the model wines without ethanol exhibited the highest browning rates both in the presence (<i>k</i> = 0.0022 day<sup>−1</sup>) and absence (<i>k</i> = 0.0035 day<sup>−1</sup>) of SO<sub>2</sub>. Notably, ethanol concentration showed a negative correlation with kinetic rates in both scenarios: with SO<sub>2</sub> (<i>r</i> = −0.9317) and without SO<sub>2</sub> (<i>r</i> = −0.9667). The addition of Fe and Cu separately led to a slight elevation in browning, particularly evident with Fe, while adding only Cu exhibited nonsignificant impact. However, their combined addition revealed a marked synergistic effect, rendering the rate notably sensitive to Cu concentration.</p>\n </div>","PeriodicalId":15802,"journal":{"name":"Journal of Food Biochemistry","volume":"2024 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/2318470","citationCount":"0","resultStr":"{\"title\":\"The Effect of Ethanol, SO2, and Transition Metals on Browning Kinetics in Low- and No-Alcohol Model Wine\",\"authors\":\"Yogesh Kumar, Arianna Ricci, Guanghao Wang, Giuseppina Paola Parpinello, Andrea Versari\",\"doi\":\"10.1155/2024/2318470\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n <p>The study delved into the rate of browning (A<sub>420</sub> nm) within a model wine solution, aiming to elucidate mechanisms impacting real product scenarios, including low- and no-alcohol wines. The model wine solutions were prepared by adding tartaric acid, caffeic acid, and catechin into an aqueous ethanol solution containing transition metals (iron [Fe] and copper [Cu]) along with sulfur dioxide (SO<sub>2</sub>). The results indicated that the model wines without ethanol exhibited the highest browning rates both in the presence (<i>k</i> = 0.0022 day<sup>−1</sup>) and absence (<i>k</i> = 0.0035 day<sup>−1</sup>) of SO<sub>2</sub>. Notably, ethanol concentration showed a negative correlation with kinetic rates in both scenarios: with SO<sub>2</sub> (<i>r</i> = −0.9317) and without SO<sub>2</sub> (<i>r</i> = −0.9667). The addition of Fe and Cu separately led to a slight elevation in browning, particularly evident with Fe, while adding only Cu exhibited nonsignificant impact. However, their combined addition revealed a marked synergistic effect, rendering the rate notably sensitive to Cu concentration.</p>\\n </div>\",\"PeriodicalId\":15802,\"journal\":{\"name\":\"Journal of Food Biochemistry\",\"volume\":\"2024 1\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/2318470\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Food Biochemistry\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1155/2024/2318470\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Food Biochemistry","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/2024/2318470","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
The Effect of Ethanol, SO2, and Transition Metals on Browning Kinetics in Low- and No-Alcohol Model Wine
The study delved into the rate of browning (A420 nm) within a model wine solution, aiming to elucidate mechanisms impacting real product scenarios, including low- and no-alcohol wines. The model wine solutions were prepared by adding tartaric acid, caffeic acid, and catechin into an aqueous ethanol solution containing transition metals (iron [Fe] and copper [Cu]) along with sulfur dioxide (SO2). The results indicated that the model wines without ethanol exhibited the highest browning rates both in the presence (k = 0.0022 day−1) and absence (k = 0.0035 day−1) of SO2. Notably, ethanol concentration showed a negative correlation with kinetic rates in both scenarios: with SO2 (r = −0.9317) and without SO2 (r = −0.9667). The addition of Fe and Cu separately led to a slight elevation in browning, particularly evident with Fe, while adding only Cu exhibited nonsignificant impact. However, their combined addition revealed a marked synergistic effect, rendering the rate notably sensitive to Cu concentration.
期刊介绍:
The Journal of Food Biochemistry publishes fully peer-reviewed original research and review papers on the effects of handling, storage, and processing on the biochemical aspects of food tissues, systems, and bioactive compounds in the diet.
Researchers in food science, food technology, biochemistry, and nutrition, particularly based in academia and industry, will find much of great use and interest in the journal. Coverage includes:
-Biochemistry of postharvest/postmortem and processing problems
-Enzyme chemistry and technology
-Membrane biology and chemistry
-Cell biology
-Biophysics
-Genetic expression
-Pharmacological properties of food ingredients with an emphasis on the content of bioactive ingredients in foods
Examples of topics covered in recently-published papers on two topics of current wide interest, nutraceuticals/functional foods and postharvest/postmortem, include the following:
-Bioactive compounds found in foods, such as chocolate and herbs, as they affect serum cholesterol, diabetes, hypertension, and heart disease
-The mechanism of the ripening process in fruit
-The biogenesis of flavor precursors in meat
-How biochemical changes in farm-raised fish are affecting processing and edible quality