Matthew G. Boebinger, Ayana Ghosh, Kevin M. Roccapriore, Sudhajit Misra, Kai Xiao, Stephen Jesse, Maxim Ziatdinov, Sergei V. Kalinin, Raymond R. Unocic
{"title":"利用机器学习辅助高时间分辨率电子显微镜探索电子束诱导的材料改性","authors":"Matthew G. Boebinger, Ayana Ghosh, Kevin M. Roccapriore, Sudhajit Misra, Kai Xiao, Stephen Jesse, Maxim Ziatdinov, Sergei V. Kalinin, Raymond R. Unocic","doi":"10.1038/s41524-024-01448-7","DOIUrl":null,"url":null,"abstract":"<p>Directed atomic fabrication using an aberration-corrected scanning transmission electron microscope (STEM) opens new pathways for atomic engineering of functional materials. In this approach, the electron beam is used to actively alter the atomic structure through electron beam induced irradiation processes. One of the impediments that has limited widespread use thus far has been the ability to understand the fundamental mechanisms of atomic transformation pathways at high spatiotemporal resolution. Here, we develop a workflow for obtaining and analyzing high-speed spiral scan STEM data, up to 100 fps, to track the atomic fabrication process during nanopore milling in monolayer MoS<sub>2</sub>. An automated feedback-controlled electron beam positioning system combined with deep convolution neural network (DCNN) was used to decipher fast but low signal-to-noise datasets and classify time-resolved atom positions and nature of their evolving atomic defect configurations. Through this automated decoding, the initial atomic disordering and reordering processes leading to nanopore formation was able to be studied across various timescales. Using these experimental workflows a greater degree of speed and information can be extracted from small datasets without compromising spatial resolution. This approach can be adapted to other 2D materials systems to gain further insights into the defect formation necessary to inform future automated fabrication techniques utilizing the STEM electron beam.</p>","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"43 1","pages":""},"PeriodicalIF":9.4000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring electron-beam induced modifications of materials with machine-learning assisted high temporal resolution electron microscopy\",\"authors\":\"Matthew G. Boebinger, Ayana Ghosh, Kevin M. Roccapriore, Sudhajit Misra, Kai Xiao, Stephen Jesse, Maxim Ziatdinov, Sergei V. Kalinin, Raymond R. Unocic\",\"doi\":\"10.1038/s41524-024-01448-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Directed atomic fabrication using an aberration-corrected scanning transmission electron microscope (STEM) opens new pathways for atomic engineering of functional materials. In this approach, the electron beam is used to actively alter the atomic structure through electron beam induced irradiation processes. One of the impediments that has limited widespread use thus far has been the ability to understand the fundamental mechanisms of atomic transformation pathways at high spatiotemporal resolution. Here, we develop a workflow for obtaining and analyzing high-speed spiral scan STEM data, up to 100 fps, to track the atomic fabrication process during nanopore milling in monolayer MoS<sub>2</sub>. An automated feedback-controlled electron beam positioning system combined with deep convolution neural network (DCNN) was used to decipher fast but low signal-to-noise datasets and classify time-resolved atom positions and nature of their evolving atomic defect configurations. Through this automated decoding, the initial atomic disordering and reordering processes leading to nanopore formation was able to be studied across various timescales. Using these experimental workflows a greater degree of speed and information can be extracted from small datasets without compromising spatial resolution. This approach can be adapted to other 2D materials systems to gain further insights into the defect formation necessary to inform future automated fabrication techniques utilizing the STEM electron beam.</p>\",\"PeriodicalId\":19342,\"journal\":{\"name\":\"npj Computational Materials\",\"volume\":\"43 1\",\"pages\":\"\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2024-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Computational Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1038/s41524-024-01448-7\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Computational Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41524-024-01448-7","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Exploring electron-beam induced modifications of materials with machine-learning assisted high temporal resolution electron microscopy
Directed atomic fabrication using an aberration-corrected scanning transmission electron microscope (STEM) opens new pathways for atomic engineering of functional materials. In this approach, the electron beam is used to actively alter the atomic structure through electron beam induced irradiation processes. One of the impediments that has limited widespread use thus far has been the ability to understand the fundamental mechanisms of atomic transformation pathways at high spatiotemporal resolution. Here, we develop a workflow for obtaining and analyzing high-speed spiral scan STEM data, up to 100 fps, to track the atomic fabrication process during nanopore milling in monolayer MoS2. An automated feedback-controlled electron beam positioning system combined with deep convolution neural network (DCNN) was used to decipher fast but low signal-to-noise datasets and classify time-resolved atom positions and nature of their evolving atomic defect configurations. Through this automated decoding, the initial atomic disordering and reordering processes leading to nanopore formation was able to be studied across various timescales. Using these experimental workflows a greater degree of speed and information can be extracted from small datasets without compromising spatial resolution. This approach can be adapted to other 2D materials systems to gain further insights into the defect formation necessary to inform future automated fabrication techniques utilizing the STEM electron beam.
期刊介绍:
npj Computational Materials is a high-quality open access journal from Nature Research that publishes research papers applying computational approaches for the design of new materials and enhancing our understanding of existing ones. The journal also welcomes papers on new computational techniques and the refinement of current approaches that support these aims, as well as experimental papers that complement computational findings.
Some key features of npj Computational Materials include a 2-year impact factor of 12.241 (2021), article downloads of 1,138,590 (2021), and a fast turnaround time of 11 days from submission to the first editorial decision. The journal is indexed in various databases and services, including Chemical Abstracts Service (ACS), Astrophysics Data System (ADS), Current Contents/Physical, Chemical and Earth Sciences, Journal Citation Reports/Science Edition, SCOPUS, EI Compendex, INSPEC, Google Scholar, SCImago, DOAJ, CNKI, and Science Citation Index Expanded (SCIE), among others.