利用累积塑性应变率梯度对软化塑性进行正则化处理

IF 5 2区 工程技术 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Journal of The Mechanics and Physics of Solids Pub Date : 2024-11-04 DOI:10.1016/j.jmps.2024.105923
G. Bacquaert , J. Bleyer , C. Maurini
{"title":"利用累积塑性应变率梯度对软化塑性进行正则化处理","authors":"G. Bacquaert ,&nbsp;J. Bleyer ,&nbsp;C. Maurini","doi":"10.1016/j.jmps.2024.105923","DOIUrl":null,"url":null,"abstract":"<div><div>We propose a novel variational framework to regularize softening plasticity problems. Specifically, we modify the plastic dissipation potential term by adding a contribution depending on the cumulative plastic strain-rate gradient. We formulate the evolution of the so-obtained strain-rate gradient plasticity model with an incremental variational principle. The time-discretized evolution equations are deduced from the corresponding first-order optimality conditions. To investigate the model, the problem of a bar in traction is studied. Analytical solutions are explicitly derived, and characterized by exponential localization profiles. Contrary to other regularization strategies, no spurious spreading of the plastic localization band is observed. A first numerical implementation in 1D and 2D plane strain conditions is proposed based on conic programming solvers and validated against the analytical predictions. Numerical results on plane strain von Mises plasticity show that the proposed framework leads to mesh-independent results and efficient control of plastic localization bands.</div></div>","PeriodicalId":17331,"journal":{"name":"Journal of The Mechanics and Physics of Solids","volume":"194 ","pages":"Article 105923"},"PeriodicalIF":5.0000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Regularization of softening plasticity with the cumulative plastic strain-rate gradient\",\"authors\":\"G. Bacquaert ,&nbsp;J. Bleyer ,&nbsp;C. Maurini\",\"doi\":\"10.1016/j.jmps.2024.105923\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We propose a novel variational framework to regularize softening plasticity problems. Specifically, we modify the plastic dissipation potential term by adding a contribution depending on the cumulative plastic strain-rate gradient. We formulate the evolution of the so-obtained strain-rate gradient plasticity model with an incremental variational principle. The time-discretized evolution equations are deduced from the corresponding first-order optimality conditions. To investigate the model, the problem of a bar in traction is studied. Analytical solutions are explicitly derived, and characterized by exponential localization profiles. Contrary to other regularization strategies, no spurious spreading of the plastic localization band is observed. A first numerical implementation in 1D and 2D plane strain conditions is proposed based on conic programming solvers and validated against the analytical predictions. Numerical results on plane strain von Mises plasticity show that the proposed framework leads to mesh-independent results and efficient control of plastic localization bands.</div></div>\",\"PeriodicalId\":17331,\"journal\":{\"name\":\"Journal of The Mechanics and Physics of Solids\",\"volume\":\"194 \",\"pages\":\"Article 105923\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of The Mechanics and Physics of Solids\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022509624003892\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Mechanics and Physics of Solids","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022509624003892","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一个新颖的变分框架来正则化软化塑性问题。具体来说,我们修改了塑性耗散势项,增加了一个取决于累积塑性应变率梯度的贡献。我们用增量变分原理来计算由此获得的应变率梯度塑性模型的演化。根据相应的一阶最优条件推导出时间细化的演化方程。为了研究该模型,对牵引中的棒材问题进行了研究。明确推导出了解析解,并以指数局部化剖面为特征。与其他正则化策略相反,没有观察到塑性局部化带的虚假扩散。基于圆锥编程求解器,首次提出了一维和二维平面应变条件下的数值实现方法,并与分析预测进行了验证。平面应变冯米塞斯塑性的数值结果表明,所提出的框架能产生与网格无关的结果,并能有效控制塑性局部化带。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Regularization of softening plasticity with the cumulative plastic strain-rate gradient
We propose a novel variational framework to regularize softening plasticity problems. Specifically, we modify the plastic dissipation potential term by adding a contribution depending on the cumulative plastic strain-rate gradient. We formulate the evolution of the so-obtained strain-rate gradient plasticity model with an incremental variational principle. The time-discretized evolution equations are deduced from the corresponding first-order optimality conditions. To investigate the model, the problem of a bar in traction is studied. Analytical solutions are explicitly derived, and characterized by exponential localization profiles. Contrary to other regularization strategies, no spurious spreading of the plastic localization band is observed. A first numerical implementation in 1D and 2D plane strain conditions is proposed based on conic programming solvers and validated against the analytical predictions. Numerical results on plane strain von Mises plasticity show that the proposed framework leads to mesh-independent results and efficient control of plastic localization bands.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of The Mechanics and Physics of Solids
Journal of The Mechanics and Physics of Solids 物理-材料科学:综合
CiteScore
9.80
自引率
9.40%
发文量
276
审稿时长
52 days
期刊介绍: The aim of Journal of The Mechanics and Physics of Solids is to publish research of the highest quality and of lasting significance on the mechanics of solids. The scope is broad, from fundamental concepts in mechanics to the analysis of novel phenomena and applications. Solids are interpreted broadly to include both hard and soft materials as well as natural and synthetic structures. The approach can be theoretical, experimental or computational.This research activity sits within engineering science and the allied areas of applied mathematics, materials science, bio-mechanics, applied physics, and geophysics. The Journal was founded in 1952 by Rodney Hill, who was its Editor-in-Chief until 1968. The topics of interest to the Journal evolve with developments in the subject but its basic ethos remains the same: to publish research of the highest quality relating to the mechanics of solids. Thus, emphasis is placed on the development of fundamental concepts of mechanics and novel applications of these concepts based on theoretical, experimental or computational approaches, drawing upon the various branches of engineering science and the allied areas within applied mathematics, materials science, structural engineering, applied physics, and geophysics. The main purpose of the Journal is to foster scientific understanding of the processes of deformation and mechanical failure of all solid materials, both technological and natural, and the connections between these processes and their underlying physical mechanisms. In this sense, the content of the Journal should reflect the current state of the discipline in analysis, experimental observation, and numerical simulation. In the interest of achieving this goal, authors are encouraged to consider the significance of their contributions for the field of mechanics and the implications of their results, in addition to describing the details of their work.
期刊最新文献
Parametric extended physics-informed neural networks for solid mechanics with complex mixed boundary conditions Thermodynamic potentials for viscoelastic composites Time-dependent constitutive behaviors of a dynamically crosslinked glycerogel governed by bond kinetics and chain diffusion Magnetostriction of soft-magnetorheological elastomers Micromechanics-based variational phase-field modeling of fatigue fracture
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1