基因表达和代谢物分析表明,加快病原体识别速度和减少基于模式触发免疫的细胞死亡反应对柑橘耐受尼古丁疫霉的重要性

IF 3.9 2区 农林科学 Q1 HORTICULTURE Scientia Horticulturae Pub Date : 2024-11-12 DOI:10.1016/j.scienta.2024.113789
Harsimran Singh, Krishan Kumar, Amandeep Mittal, Archana Kumari, Rimaljeet Kaur, Anita Arora, Harleen Kaur
{"title":"基因表达和代谢物分析表明,加快病原体识别速度和减少基于模式触发免疫的细胞死亡反应对柑橘耐受尼古丁疫霉的重要性","authors":"Harsimran Singh, Krishan Kumar, Amandeep Mittal, Archana Kumari, Rimaljeet Kaur, Anita Arora, Harleen Kaur","doi":"10.1016/j.scienta.2024.113789","DOIUrl":null,"url":null,"abstract":"Understanding the basis of <ce:italic>Phytophthora</ce:italic> tolerance is essential for targeted improvement of citrus. Here, we determined the short term and long-term plant (leaf and root tissues) response of <ce:italic>Phytophthora</ce:italic> tolerant (Swingle citrumelo; SC) and susceptible (rough lemon; RL) citrus genotypes by examining important defense related genes belonging to structural reinforcement, receptors, salicylic acid (SA) &amp; jasmonic acid (JA) pathways. We also estimated downstream activity of the enzymes lipoxygenase (LOX), phenylalanine ammonia lyase (PAL) and total phenols. The plants were artificially inoculated with mycelium and zoospores of <ce:italic>P. nicotianae</ce:italic> in root zone and studied at 34- and 105- days post inoculation (dpi). SC roots strongly upregulated receptor like genes <ce:italic>viz</ce:italic>., <ce:italic>LecRK-I.9, BIR2, MPK4, MKK1</ce:italic> and <ce:italic>TTG2</ce:italic> at 34-dpi; RL in contrast showed delayed (at 105-dpi) upregulation of <ce:italic>LecRK-I.9, MKK1</ce:italic> and <ce:italic>TTG2</ce:italic>. SC also showed higher PAL activity, higher phenolic content and stronger expression of <ce:italic>GSL5</ce:italic> in roots at 34-dpi to create barrier against invading pathogen. SC roots upregulated SA pathway genes like <ce:italic>ICS1, EDS1, PAD4, CBP60</ce:italic><ce:italic>g, PR-1</ce:italic> at 34-dpi, whereas, RL showed higher expression of JA-related genes (<ce:italic>LOX2</ce:italic> and <ce:italic>AOS</ce:italic>) at 105-dpi, suggesting their role in favoring necrotrophic phase. In general, the SC leaf at 105-dpi mimicked the defense response of its roots at 34-dpi. Study results suggest that early perception, preformed barriers and restricting the pathogen in biotrophic phase are the key tolerance mechanisms of Swingle citrumelo to <ce:italic>P. nicotianae</ce:italic>. The differentially expressing receptor genes (<ce:italic>LecRK-I.9, BIR2</ce:italic>) and SA mediated defense gene, <ce:italic>PR1</ce:italic> in Swingle citrumelo should further be explored for utilization in citrus rootstock improvement.","PeriodicalId":21679,"journal":{"name":"Scientia Horticulturae","volume":"8 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gene expression and metabolite analysis reveal importance of faster pathogen recognition and reduced pattern triggered immunity based cell death responses for Phytophthora nicotianae tolerance in citrus\",\"authors\":\"Harsimran Singh, Krishan Kumar, Amandeep Mittal, Archana Kumari, Rimaljeet Kaur, Anita Arora, Harleen Kaur\",\"doi\":\"10.1016/j.scienta.2024.113789\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Understanding the basis of <ce:italic>Phytophthora</ce:italic> tolerance is essential for targeted improvement of citrus. Here, we determined the short term and long-term plant (leaf and root tissues) response of <ce:italic>Phytophthora</ce:italic> tolerant (Swingle citrumelo; SC) and susceptible (rough lemon; RL) citrus genotypes by examining important defense related genes belonging to structural reinforcement, receptors, salicylic acid (SA) &amp; jasmonic acid (JA) pathways. We also estimated downstream activity of the enzymes lipoxygenase (LOX), phenylalanine ammonia lyase (PAL) and total phenols. The plants were artificially inoculated with mycelium and zoospores of <ce:italic>P. nicotianae</ce:italic> in root zone and studied at 34- and 105- days post inoculation (dpi). SC roots strongly upregulated receptor like genes <ce:italic>viz</ce:italic>., <ce:italic>LecRK-I.9, BIR2, MPK4, MKK1</ce:italic> and <ce:italic>TTG2</ce:italic> at 34-dpi; RL in contrast showed delayed (at 105-dpi) upregulation of <ce:italic>LecRK-I.9, MKK1</ce:italic> and <ce:italic>TTG2</ce:italic>. SC also showed higher PAL activity, higher phenolic content and stronger expression of <ce:italic>GSL5</ce:italic> in roots at 34-dpi to create barrier against invading pathogen. SC roots upregulated SA pathway genes like <ce:italic>ICS1, EDS1, PAD4, CBP60</ce:italic><ce:italic>g, PR-1</ce:italic> at 34-dpi, whereas, RL showed higher expression of JA-related genes (<ce:italic>LOX2</ce:italic> and <ce:italic>AOS</ce:italic>) at 105-dpi, suggesting their role in favoring necrotrophic phase. In general, the SC leaf at 105-dpi mimicked the defense response of its roots at 34-dpi. Study results suggest that early perception, preformed barriers and restricting the pathogen in biotrophic phase are the key tolerance mechanisms of Swingle citrumelo to <ce:italic>P. nicotianae</ce:italic>. The differentially expressing receptor genes (<ce:italic>LecRK-I.9, BIR2</ce:italic>) and SA mediated defense gene, <ce:italic>PR1</ce:italic> in Swingle citrumelo should further be explored for utilization in citrus rootstock improvement.\",\"PeriodicalId\":21679,\"journal\":{\"name\":\"Scientia Horticulturae\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientia Horticulturae\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1016/j.scienta.2024.113789\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"HORTICULTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientia Horticulturae","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1016/j.scienta.2024.113789","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HORTICULTURE","Score":null,"Total":0}
引用次数: 0

摘要

了解耐受 Phytophthora 的基础对于有针对性地改良柑橘至关重要。在此,我们通过研究属于结构加固、受体、水杨酸(SA)& 茉莉酸(JA)途径的重要防御相关基因,确定了耐Phytophthora(Swingle citrumelo; SC)和易感(粗糙柠檬; RL)柑橘基因型的短期和长期植物(叶和根组织)反应。我们还估测了脂氧合酶 (LOX)、苯丙氨酸氨裂解酶 (PAL) 和总酚的下游活性。在根区人工接种尼古丁酵母菌的菌丝和分生孢子,并在接种后 34 天和 105 天(dpi)进行研究。SC 根在接种后 34 dpi 强烈上调受体类基因,即 LecRK-I.9、BIR2、MPK4、MKK1 和 TTG2;相反,RL 的 LecRK-I.9、MKK1 和 TTG2 上调延迟(接种后 105 dpi)。在 34 dpi 时,SC 还表现出更高的 PAL 活性、更高的酚含量和更强的 GSL5 表达,以建立抵御病原体入侵的屏障。在 34dpi 时,SC 根系上调 SA 途径基因,如 ICS1、EDS1、PAD4、CBP60g 和 PR-1;而在 105dpi 时,RL 表现出更高的 JA 相关基因(LOX2 和 AOS)表达量,表明它们有利于坏死期的发生。总体而言,SC叶片在105-dpi期模仿了其根系在34-dpi期的防御反应。研究结果表明,早期感知、预先形成的屏障以及在生物营养期限制病原体是汕柑对烟粉虱的主要耐受机制。应进一步探索瑞香柚中差异表达的受体基因(LecRK-I.9、BIR2)和 SA 介导的防御基因 PR1 在柑橘砧木改良中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Gene expression and metabolite analysis reveal importance of faster pathogen recognition and reduced pattern triggered immunity based cell death responses for Phytophthora nicotianae tolerance in citrus
Understanding the basis of Phytophthora tolerance is essential for targeted improvement of citrus. Here, we determined the short term and long-term plant (leaf and root tissues) response of Phytophthora tolerant (Swingle citrumelo; SC) and susceptible (rough lemon; RL) citrus genotypes by examining important defense related genes belonging to structural reinforcement, receptors, salicylic acid (SA) & jasmonic acid (JA) pathways. We also estimated downstream activity of the enzymes lipoxygenase (LOX), phenylalanine ammonia lyase (PAL) and total phenols. The plants were artificially inoculated with mycelium and zoospores of P. nicotianae in root zone and studied at 34- and 105- days post inoculation (dpi). SC roots strongly upregulated receptor like genes viz., LecRK-I.9, BIR2, MPK4, MKK1 and TTG2 at 34-dpi; RL in contrast showed delayed (at 105-dpi) upregulation of LecRK-I.9, MKK1 and TTG2. SC also showed higher PAL activity, higher phenolic content and stronger expression of GSL5 in roots at 34-dpi to create barrier against invading pathogen. SC roots upregulated SA pathway genes like ICS1, EDS1, PAD4, CBP60g, PR-1 at 34-dpi, whereas, RL showed higher expression of JA-related genes (LOX2 and AOS) at 105-dpi, suggesting their role in favoring necrotrophic phase. In general, the SC leaf at 105-dpi mimicked the defense response of its roots at 34-dpi. Study results suggest that early perception, preformed barriers and restricting the pathogen in biotrophic phase are the key tolerance mechanisms of Swingle citrumelo to P. nicotianae. The differentially expressing receptor genes (LecRK-I.9, BIR2) and SA mediated defense gene, PR1 in Swingle citrumelo should further be explored for utilization in citrus rootstock improvement.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Scientia Horticulturae
Scientia Horticulturae 农林科学-园艺
CiteScore
8.60
自引率
4.70%
发文量
796
审稿时长
47 days
期刊介绍: Scientia Horticulturae is an international journal publishing research related to horticultural crops. Articles in the journal deal with open or protected production of vegetables, fruits, edible fungi and ornamentals under temperate, subtropical and tropical conditions. Papers in related areas (biochemistry, micropropagation, soil science, plant breeding, plant physiology, phytopathology, etc.) are considered, if they contain information of direct significance to horticulture. Papers on the technical aspects of horticulture (engineering, crop processing, storage, transport etc.) are accepted for publication only if they relate directly to the living product. In the case of plantation crops, those yielding a product that may be used fresh (e.g. tropical vegetables, citrus, bananas, and other fruits) will be considered, while those papers describing the processing of the product (e.g. rubber, tobacco, and quinine) will not. The scope of the journal includes all horticultural crops but does not include speciality crops such as, medicinal crops or forestry crops, such as bamboo. Basic molecular studies without any direct application in horticulture will not be considered for this journal.
期刊最新文献
Comparative transcriptomics and weighted gene co-expression correlation network analysis (WGCNA) identified genes associated with fruit shape in pumpkin (Cucurbita maxima) Combined transcriptome and metabolome analysis reveals the mechanism of fruit quality formation in different watermelon (Citrullus lanatus) cultivars Nitric oxide fumigation maintains cantaloupe fruit quality by regulating the production of reactive oxygen species Variations in the nutritional profile and colour parameters of sweet potato varieties with different flesh colours: Effects of cropping system, mulching and growing season The efficacy of soaking fresh-cut nectarines in melatonin concentrations and its effect on antioxidant capacity microbial content and storage quality
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1