{"title":"分离但平等:单循环图中信念传播的平等性","authors":"Erel Cohen, Ben Rachmut, Omer Lev, Roie Zivan","doi":"10.1016/j.artint.2024.104243","DOIUrl":null,"url":null,"abstract":"<div><div>Belief propagation is a widely used, incomplete optimization algorithm whose main theoretical properties hold only under the assumption that beliefs are not equal. Nevertheless, there is substantial evidence to suggest that equality between beliefs does occur. A published method to overcome belief equality, which is based on the use of unary function-nodes, is commonly assumed to resolve the problem.</div><div>In this study, we focus on min-sum, the version of belief propagation that is used to solve constraint optimization problems. We prove that for the case of a single-cycle graph, belief equality can only be avoided when the algorithm converges to the optimal solution. Under any other circumstances, the unary function method will <em>not</em> prevent equality, indicating that some of the existing results presented in the literature are in need of reassessment. We differentiate between belief equality, which refers to equal beliefs in a single message, and assignment equality, which prevents the coherent assignment of values to the variables, and we provide conditions for both.</div></div>","PeriodicalId":8434,"journal":{"name":"Artificial Intelligence","volume":"338 ","pages":"Article 104243"},"PeriodicalIF":5.1000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Separate but equal: Equality in belief propagation for single-cycle graphs\",\"authors\":\"Erel Cohen, Ben Rachmut, Omer Lev, Roie Zivan\",\"doi\":\"10.1016/j.artint.2024.104243\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Belief propagation is a widely used, incomplete optimization algorithm whose main theoretical properties hold only under the assumption that beliefs are not equal. Nevertheless, there is substantial evidence to suggest that equality between beliefs does occur. A published method to overcome belief equality, which is based on the use of unary function-nodes, is commonly assumed to resolve the problem.</div><div>In this study, we focus on min-sum, the version of belief propagation that is used to solve constraint optimization problems. We prove that for the case of a single-cycle graph, belief equality can only be avoided when the algorithm converges to the optimal solution. Under any other circumstances, the unary function method will <em>not</em> prevent equality, indicating that some of the existing results presented in the literature are in need of reassessment. We differentiate between belief equality, which refers to equal beliefs in a single message, and assignment equality, which prevents the coherent assignment of values to the variables, and we provide conditions for both.</div></div>\",\"PeriodicalId\":8434,\"journal\":{\"name\":\"Artificial Intelligence\",\"volume\":\"338 \",\"pages\":\"Article 104243\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2024-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Artificial Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0004370224001796\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0004370224001796","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Separate but equal: Equality in belief propagation for single-cycle graphs
Belief propagation is a widely used, incomplete optimization algorithm whose main theoretical properties hold only under the assumption that beliefs are not equal. Nevertheless, there is substantial evidence to suggest that equality between beliefs does occur. A published method to overcome belief equality, which is based on the use of unary function-nodes, is commonly assumed to resolve the problem.
In this study, we focus on min-sum, the version of belief propagation that is used to solve constraint optimization problems. We prove that for the case of a single-cycle graph, belief equality can only be avoided when the algorithm converges to the optimal solution. Under any other circumstances, the unary function method will not prevent equality, indicating that some of the existing results presented in the literature are in need of reassessment. We differentiate between belief equality, which refers to equal beliefs in a single message, and assignment equality, which prevents the coherent assignment of values to the variables, and we provide conditions for both.
期刊介绍:
The Journal of Artificial Intelligence (AIJ) welcomes papers covering a broad spectrum of AI topics, including cognition, automated reasoning, computer vision, machine learning, and more. Papers should demonstrate advancements in AI and propose innovative approaches to AI problems. Additionally, the journal accepts papers describing AI applications, focusing on how new methods enhance performance rather than reiterating conventional approaches. In addition to regular papers, AIJ also accepts Research Notes, Research Field Reviews, Position Papers, Book Reviews, and summary papers on AI challenges and competitions.