Jonathan E Dawson, Abby Bryant, Breana Walton, Simran Bhikot, Shawn Macon, Amber Ajamu-Johnson, Trevor Jordan, Paul D Langridge, Abdul N Malmi-Kakkada
{"title":"接触面积和组织生长动态塑造了合成并列腺素信号模式。","authors":"Jonathan E Dawson, Abby Bryant, Breana Walton, Simran Bhikot, Shawn Macon, Amber Ajamu-Johnson, Trevor Jordan, Paul D Langridge, Abdul N Malmi-Kakkada","doi":"10.1016/j.bpj.2024.11.007","DOIUrl":null,"url":null,"abstract":"<p><p>Cell-cell communication through direct contact, or juxtacrine signaling, is important in development, disease, and many areas of physiology. Synthetic forms of juxtacrine signaling can be precisely controlled and operate orthogonally to native processes, making them a powerful reductionist tool with which to address fundamental questions in cell-cell communication in vivo. Here we investigate how cell-cell contact length and tissue growth dynamics affect juxtacrine signal responses through implementing a custom synthetic gene circuit in Drosophila wing imaginal discs alongside mathematical modeling to determine synthetic Notch (synNotch) activation patterns. We find that the area of contact between cells largely determines the extent of synNotch activation, leading to the prediction that the shape of the interface between signal-sending and signal-receiving cells will impact the magnitude of the synNotch response. Notably, synNotch outputs form a graded spatial profile that extends several cell diameters from the signal source, providing evidence that the response to juxtacrine signals can persist in cells as they proliferate away from source cells, or that cells remain able to communicate directly over several cell diameters. Our model suggests the former mechanism may be sufficient, since it predicts graded outputs without diffusion or long-range cell-cell communication. Overall, we identify that cell-cell contact area together with output synthesis and decay rates likely govern the pattern of synNotch outputs in both space and time during tissue growth, insights that may have broader implications for juxtacrine signaling in general.</p>","PeriodicalId":8922,"journal":{"name":"Biophysical journal","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Contact area and tissue growth dynamics shape synthetic juxtacrine signaling patterns.\",\"authors\":\"Jonathan E Dawson, Abby Bryant, Breana Walton, Simran Bhikot, Shawn Macon, Amber Ajamu-Johnson, Trevor Jordan, Paul D Langridge, Abdul N Malmi-Kakkada\",\"doi\":\"10.1016/j.bpj.2024.11.007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cell-cell communication through direct contact, or juxtacrine signaling, is important in development, disease, and many areas of physiology. Synthetic forms of juxtacrine signaling can be precisely controlled and operate orthogonally to native processes, making them a powerful reductionist tool with which to address fundamental questions in cell-cell communication in vivo. Here we investigate how cell-cell contact length and tissue growth dynamics affect juxtacrine signal responses through implementing a custom synthetic gene circuit in Drosophila wing imaginal discs alongside mathematical modeling to determine synthetic Notch (synNotch) activation patterns. We find that the area of contact between cells largely determines the extent of synNotch activation, leading to the prediction that the shape of the interface between signal-sending and signal-receiving cells will impact the magnitude of the synNotch response. Notably, synNotch outputs form a graded spatial profile that extends several cell diameters from the signal source, providing evidence that the response to juxtacrine signals can persist in cells as they proliferate away from source cells, or that cells remain able to communicate directly over several cell diameters. Our model suggests the former mechanism may be sufficient, since it predicts graded outputs without diffusion or long-range cell-cell communication. Overall, we identify that cell-cell contact area together with output synthesis and decay rates likely govern the pattern of synNotch outputs in both space and time during tissue growth, insights that may have broader implications for juxtacrine signaling in general.</p>\",\"PeriodicalId\":8922,\"journal\":{\"name\":\"Biophysical journal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biophysical journal\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.bpj.2024.11.007\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biophysical journal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.bpj.2024.11.007","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOPHYSICS","Score":null,"Total":0}
Contact area and tissue growth dynamics shape synthetic juxtacrine signaling patterns.
Cell-cell communication through direct contact, or juxtacrine signaling, is important in development, disease, and many areas of physiology. Synthetic forms of juxtacrine signaling can be precisely controlled and operate orthogonally to native processes, making them a powerful reductionist tool with which to address fundamental questions in cell-cell communication in vivo. Here we investigate how cell-cell contact length and tissue growth dynamics affect juxtacrine signal responses through implementing a custom synthetic gene circuit in Drosophila wing imaginal discs alongside mathematical modeling to determine synthetic Notch (synNotch) activation patterns. We find that the area of contact between cells largely determines the extent of synNotch activation, leading to the prediction that the shape of the interface between signal-sending and signal-receiving cells will impact the magnitude of the synNotch response. Notably, synNotch outputs form a graded spatial profile that extends several cell diameters from the signal source, providing evidence that the response to juxtacrine signals can persist in cells as they proliferate away from source cells, or that cells remain able to communicate directly over several cell diameters. Our model suggests the former mechanism may be sufficient, since it predicts graded outputs without diffusion or long-range cell-cell communication. Overall, we identify that cell-cell contact area together with output synthesis and decay rates likely govern the pattern of synNotch outputs in both space and time during tissue growth, insights that may have broader implications for juxtacrine signaling in general.
期刊介绍:
BJ publishes original articles, letters, and perspectives on important problems in modern biophysics. The papers should be written so as to be of interest to a broad community of biophysicists. BJ welcomes experimental studies that employ quantitative physical approaches for the study of biological systems, including or spanning scales from molecule to whole organism. Experimental studies of a purely descriptive or phenomenological nature, with no theoretical or mechanistic underpinning, are not appropriate for publication in BJ. Theoretical studies should offer new insights into the understanding ofexperimental results or suggest new experimentally testable hypotheses. Articles reporting significant methodological or technological advances, which have potential to open new areas of biophysical investigation, are also suitable for publication in BJ. Papers describing improvements in accuracy or speed of existing methods or extra detail within methods described previously are not suitable for BJ.