{"title":"草甘膦除草剂对金苹果蜗牛卵的孵化率、形态改变和乙酰胆碱酯酶(AChE)表达的不利影响。","authors":"Phochit Nanthanawat , Wilaiporn Insuwan , Witchuda Prasatkaew , Jakkaphun Nanuam , Panomsak Meemon , Chutima Thanomsit","doi":"10.1016/j.aquatox.2024.107162","DOIUrl":null,"url":null,"abstract":"<div><div>This research investigated the effects of glyphosate herbicide on golden apple snail (<em>Pomacea canaliculata</em>) eggs, focusing on hatching rates, morphological changes, and acetylcholinesterase (AChE) expression to explore its potential as a biomarker of exposure. Additionally, key bioactive components in golden apple snail eggs were characterized. The study demonstrated that glyphosate toxicity increased with both exposure time and concentration. Optical coherence tomography (OCT) analysis revealed adverse morphological effects on eggs and embryos, including changes in shell structure and organ development. SDS-PAGE analysis identified four main protein bands, including Perivitellin 2 in three isoforms (98, 67, and 31 kDa) and Ovorubin (28 kDa). Lipids, phosphorus, and carbohydrates were identified as key components through Sudan Black B, Methyl Green, and Alcian Blue staining. AChE, with a molecular weight of 71 kDa, was further analyzed by Western blot, showing decreased expression with prolonged and higher concentrations of glyphosate exposure. GC–MS analysis identified major bioactive compounds in untreated eggs, including 3-Fluoro-β, 5-dihydroxy-N-methylbenzeneethanamine, 2-Aziridinylethylamine, and dextroamphetamine, which have pharmaceutical properties such as anti-hypertensive, diuretic, anti-diabetic, and anti-inflammatory effects, as well as potential applications in treating attention deficit hyperactivity disorder and narcolepsy. These compounds were present at lower levels in glyphosate-exposed groups, suggesting glyphosate's impact on the eggs' biochemical defense mechanisms. This study highlights the potential effects of glyphosate on golden apple snail eggs, which may have implications for future snail populations and aquatic ecosystems.</div></div>","PeriodicalId":248,"journal":{"name":"Aquatic Toxicology","volume":null,"pages":null},"PeriodicalIF":4.1000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adverse effects of glyphosate-based herbicide on hatching rate, morphological alterations, and acetylcholinesterase (AChE) expression in golden apple snail eggs\",\"authors\":\"Phochit Nanthanawat , Wilaiporn Insuwan , Witchuda Prasatkaew , Jakkaphun Nanuam , Panomsak Meemon , Chutima Thanomsit\",\"doi\":\"10.1016/j.aquatox.2024.107162\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This research investigated the effects of glyphosate herbicide on golden apple snail (<em>Pomacea canaliculata</em>) eggs, focusing on hatching rates, morphological changes, and acetylcholinesterase (AChE) expression to explore its potential as a biomarker of exposure. Additionally, key bioactive components in golden apple snail eggs were characterized. The study demonstrated that glyphosate toxicity increased with both exposure time and concentration. Optical coherence tomography (OCT) analysis revealed adverse morphological effects on eggs and embryos, including changes in shell structure and organ development. SDS-PAGE analysis identified four main protein bands, including Perivitellin 2 in three isoforms (98, 67, and 31 kDa) and Ovorubin (28 kDa). Lipids, phosphorus, and carbohydrates were identified as key components through Sudan Black B, Methyl Green, and Alcian Blue staining. AChE, with a molecular weight of 71 kDa, was further analyzed by Western blot, showing decreased expression with prolonged and higher concentrations of glyphosate exposure. GC–MS analysis identified major bioactive compounds in untreated eggs, including 3-Fluoro-β, 5-dihydroxy-N-methylbenzeneethanamine, 2-Aziridinylethylamine, and dextroamphetamine, which have pharmaceutical properties such as anti-hypertensive, diuretic, anti-diabetic, and anti-inflammatory effects, as well as potential applications in treating attention deficit hyperactivity disorder and narcolepsy. These compounds were present at lower levels in glyphosate-exposed groups, suggesting glyphosate's impact on the eggs' biochemical defense mechanisms. This study highlights the potential effects of glyphosate on golden apple snail eggs, which may have implications for future snail populations and aquatic ecosystems.</div></div>\",\"PeriodicalId\":248,\"journal\":{\"name\":\"Aquatic Toxicology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aquatic Toxicology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0166445X24003321\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MARINE & FRESHWATER BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aquatic Toxicology","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166445X24003321","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MARINE & FRESHWATER BIOLOGY","Score":null,"Total":0}
Adverse effects of glyphosate-based herbicide on hatching rate, morphological alterations, and acetylcholinesterase (AChE) expression in golden apple snail eggs
This research investigated the effects of glyphosate herbicide on golden apple snail (Pomacea canaliculata) eggs, focusing on hatching rates, morphological changes, and acetylcholinesterase (AChE) expression to explore its potential as a biomarker of exposure. Additionally, key bioactive components in golden apple snail eggs were characterized. The study demonstrated that glyphosate toxicity increased with both exposure time and concentration. Optical coherence tomography (OCT) analysis revealed adverse morphological effects on eggs and embryos, including changes in shell structure and organ development. SDS-PAGE analysis identified four main protein bands, including Perivitellin 2 in three isoforms (98, 67, and 31 kDa) and Ovorubin (28 kDa). Lipids, phosphorus, and carbohydrates were identified as key components through Sudan Black B, Methyl Green, and Alcian Blue staining. AChE, with a molecular weight of 71 kDa, was further analyzed by Western blot, showing decreased expression with prolonged and higher concentrations of glyphosate exposure. GC–MS analysis identified major bioactive compounds in untreated eggs, including 3-Fluoro-β, 5-dihydroxy-N-methylbenzeneethanamine, 2-Aziridinylethylamine, and dextroamphetamine, which have pharmaceutical properties such as anti-hypertensive, diuretic, anti-diabetic, and anti-inflammatory effects, as well as potential applications in treating attention deficit hyperactivity disorder and narcolepsy. These compounds were present at lower levels in glyphosate-exposed groups, suggesting glyphosate's impact on the eggs' biochemical defense mechanisms. This study highlights the potential effects of glyphosate on golden apple snail eggs, which may have implications for future snail populations and aquatic ecosystems.
期刊介绍:
Aquatic Toxicology publishes significant contributions that increase the understanding of the impact of harmful substances (including natural and synthetic chemicals) on aquatic organisms and ecosystems.
Aquatic Toxicology considers both laboratory and field studies with a focus on marine/ freshwater environments. We strive to attract high quality original scientific papers, critical reviews and expert opinion papers in the following areas: Effects of harmful substances on molecular, cellular, sub-organismal, organismal, population, community, and ecosystem level; Toxic Mechanisms; Genetic disturbances, transgenerational effects, behavioral and adaptive responses; Impacts of harmful substances on structure, function of and services provided by aquatic ecosystems; Mixture toxicity assessment; Statistical approaches to predict exposure to and hazards of contaminants
The journal also considers manuscripts in other areas, such as the development of innovative concepts, approaches, and methodologies, which promote the wider application of toxicological datasets to the protection of aquatic environments and inform ecological risk assessments and decision making by relevant authorities.