{"title":"Ab-amy 2.0:基于抗体语言模型预测治疗性抗体的轻链淀粉样蛋白致病风险。","authors":"Yuwei Zhou, Wenwen Liu, Chunmei Luo, Ziru Huang, Gunarathne Samarappuli Mudiyanselage Savini, Lening Zhao, Rong Wang, Jian Huang","doi":"10.1016/j.ymeth.2024.11.005","DOIUrl":null,"url":null,"abstract":"<p><p>Therapeutic antibodies have emerged as a promising treatment option for a wide range of diseases. However, the light chain of antibodies can potentially induce amyloidosis, a condition characterized by protein misfolding and aggregation, posing a significant safety concern. Therefore, it is crucial to assess the amyloidogenic risk of therapeutic antibodies during the early stages of drug development. In this study, we introduce AB-Amy 2.0, a new computational model with enhanced performance for assessing the light chain amyloidogenic risk of therapeutic antibodies. By employing pretrained protein language models (PLMs) embeddings, AB-Amy 2.0 achieves higher accuracy in amyloidogenic risk prediction compared with traditional features offering a crucial tool for early-stage identification of antibodies with low aggregation propensity. The AB-Amy 2.0 was trained on antiBERTy embeddings and utilizes the SVM algorithm, resulting in superior performance metrics. On an independent test dataset, the model achieved high sensitivity, specificity, ACC, MCC and AUC of 93.47%, 89.23%, 91.92%, 0.8261 and 0.9739, respectively. These results highlight the effectiveness and robustness of AB-Amy 2.0 in predicting light chain amyloidogenic risk accurately. To facilitate user-friendly access, we have developed an online web server (http://i.uestc.edu.cn/AB-Amy2) and a command line tool (https://github.com/zzyywww/ABAmy2). These resources enable the broader application of this advanced model and promise to enhance the development of safer therapeutic antibodies.</p>","PeriodicalId":390,"journal":{"name":"Methods","volume":" ","pages":"11-18"},"PeriodicalIF":4.2000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ab-Amy 2.0: Predicting light chain amyloidogenic risk of therapeutic antibodies based on antibody language model.\",\"authors\":\"Yuwei Zhou, Wenwen Liu, Chunmei Luo, Ziru Huang, Gunarathne Samarappuli Mudiyanselage Savini, Lening Zhao, Rong Wang, Jian Huang\",\"doi\":\"10.1016/j.ymeth.2024.11.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Therapeutic antibodies have emerged as a promising treatment option for a wide range of diseases. However, the light chain of antibodies can potentially induce amyloidosis, a condition characterized by protein misfolding and aggregation, posing a significant safety concern. Therefore, it is crucial to assess the amyloidogenic risk of therapeutic antibodies during the early stages of drug development. In this study, we introduce AB-Amy 2.0, a new computational model with enhanced performance for assessing the light chain amyloidogenic risk of therapeutic antibodies. By employing pretrained protein language models (PLMs) embeddings, AB-Amy 2.0 achieves higher accuracy in amyloidogenic risk prediction compared with traditional features offering a crucial tool for early-stage identification of antibodies with low aggregation propensity. The AB-Amy 2.0 was trained on antiBERTy embeddings and utilizes the SVM algorithm, resulting in superior performance metrics. On an independent test dataset, the model achieved high sensitivity, specificity, ACC, MCC and AUC of 93.47%, 89.23%, 91.92%, 0.8261 and 0.9739, respectively. These results highlight the effectiveness and robustness of AB-Amy 2.0 in predicting light chain amyloidogenic risk accurately. To facilitate user-friendly access, we have developed an online web server (http://i.uestc.edu.cn/AB-Amy2) and a command line tool (https://github.com/zzyywww/ABAmy2). These resources enable the broader application of this advanced model and promise to enhance the development of safer therapeutic antibodies.</p>\",\"PeriodicalId\":390,\"journal\":{\"name\":\"Methods\",\"volume\":\" \",\"pages\":\"11-18\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Methods\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.ymeth.2024.11.005\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.ymeth.2024.11.005","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Ab-Amy 2.0: Predicting light chain amyloidogenic risk of therapeutic antibodies based on antibody language model.
Therapeutic antibodies have emerged as a promising treatment option for a wide range of diseases. However, the light chain of antibodies can potentially induce amyloidosis, a condition characterized by protein misfolding and aggregation, posing a significant safety concern. Therefore, it is crucial to assess the amyloidogenic risk of therapeutic antibodies during the early stages of drug development. In this study, we introduce AB-Amy 2.0, a new computational model with enhanced performance for assessing the light chain amyloidogenic risk of therapeutic antibodies. By employing pretrained protein language models (PLMs) embeddings, AB-Amy 2.0 achieves higher accuracy in amyloidogenic risk prediction compared with traditional features offering a crucial tool for early-stage identification of antibodies with low aggregation propensity. The AB-Amy 2.0 was trained on antiBERTy embeddings and utilizes the SVM algorithm, resulting in superior performance metrics. On an independent test dataset, the model achieved high sensitivity, specificity, ACC, MCC and AUC of 93.47%, 89.23%, 91.92%, 0.8261 and 0.9739, respectively. These results highlight the effectiveness and robustness of AB-Amy 2.0 in predicting light chain amyloidogenic risk accurately. To facilitate user-friendly access, we have developed an online web server (http://i.uestc.edu.cn/AB-Amy2) and a command line tool (https://github.com/zzyywww/ABAmy2). These resources enable the broader application of this advanced model and promise to enhance the development of safer therapeutic antibodies.
期刊介绍:
Methods focuses on rapidly developing techniques in the experimental biological and medical sciences.
Each topical issue, organized by a guest editor who is an expert in the area covered, consists solely of invited quality articles by specialist authors, many of them reviews. Issues are devoted to specific technical approaches with emphasis on clear detailed descriptions of protocols that allow them to be reproduced easily. The background information provided enables researchers to understand the principles underlying the methods; other helpful sections include comparisons of alternative methods giving the advantages and disadvantages of particular methods, guidance on avoiding potential pitfalls, and suggestions for troubleshooting.