多种压力的结合会阻碍细菌的迁移和生长。

IF 8.1 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Current Biology Pub Date : 2024-11-13 DOI:10.1016/j.cub.2024.10.029
Anuradha Sharma, Alexander M Shuppara, Gilberto C Padron, Joseph E Sanfilippo
{"title":"多种压力的结合会阻碍细菌的迁移和生长。","authors":"Anuradha Sharma, Alexander M Shuppara, Gilberto C Padron, Joseph E Sanfilippo","doi":"10.1016/j.cub.2024.10.029","DOIUrl":null,"url":null,"abstract":"<p><p>In nature, organisms experience combinations of stressors. However, laboratory studies use batch cultures, which simplify reality and focus on population-level responses to individual stressors.<sup>1</sup><sup>,</sup><sup>2</sup><sup>,</sup><sup>3</sup><sup>,</sup><sup>4</sup><sup>,</sup><sup>5</sup> In recent years, bacterial stress responses have been examined with single-cell resolution using microfluidics.<sup>6</sup><sup>,</sup><sup>7</sup><sup>,</sup><sup>8</sup><sup>,</sup><sup>9</sup><sup>,</sup><sup>10</sup><sup>,</sup><sup>11</sup><sup>,</sup><sup>12</sup> Here, we use a microfluidic approach to simultaneously provide a physical stressor (shear flow) and a chemical stressor (H<sub>2</sub>O<sub>2</sub>) to the human pathogen Pseudomonas aeruginosa. By treating cells with levels of flow and H<sub>2</sub>O<sub>2</sub> that commonly co-occur in human host tissues,<sup>13</sup><sup>,</sup><sup>14</sup><sup>,</sup><sup>15</sup><sup>,</sup><sup>16</sup><sup>,</sup><sup>17</sup><sup>,</sup><sup>18</sup> we discover that previous reports significantly overestimate the H<sub>2</sub>O<sub>2</sub> levels required to block bacterial growth. Specifically, we establish that flow increases H<sub>2</sub>O<sub>2</sub> effectiveness 50-fold, explaining why previous studies lacking flow required much higher concentrations. Using natural H<sub>2</sub>O<sub>2</sub> levels, we identify the core H<sub>2</sub>O<sub>2</sub> regulon, characterize OxyR-mediated dynamic regulation, and demonstrate that multiple H<sub>2</sub>O<sub>2</sub> scavenging systems have redundant roles. By examining single-cell behavior, we serendipitously discover that the combined effects of H<sub>2</sub>O<sub>2</sub> and flow block pilus-driven surface migration. Thus, our results counter previous studies and reveal that natural levels of H<sub>2</sub>O<sub>2</sub> and flow synergize to restrict bacterial motility and survival. By studying two stressors at once, our research highlights the limitations of oversimplifying nature and demonstrates that physical and chemical stress can combine to yield unpredictable effects.</p>","PeriodicalId":11359,"journal":{"name":"Current Biology","volume":" ","pages":""},"PeriodicalIF":8.1000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Combining multiple stressors blocks bacterial migration and growth.\",\"authors\":\"Anuradha Sharma, Alexander M Shuppara, Gilberto C Padron, Joseph E Sanfilippo\",\"doi\":\"10.1016/j.cub.2024.10.029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In nature, organisms experience combinations of stressors. However, laboratory studies use batch cultures, which simplify reality and focus on population-level responses to individual stressors.<sup>1</sup><sup>,</sup><sup>2</sup><sup>,</sup><sup>3</sup><sup>,</sup><sup>4</sup><sup>,</sup><sup>5</sup> In recent years, bacterial stress responses have been examined with single-cell resolution using microfluidics.<sup>6</sup><sup>,</sup><sup>7</sup><sup>,</sup><sup>8</sup><sup>,</sup><sup>9</sup><sup>,</sup><sup>10</sup><sup>,</sup><sup>11</sup><sup>,</sup><sup>12</sup> Here, we use a microfluidic approach to simultaneously provide a physical stressor (shear flow) and a chemical stressor (H<sub>2</sub>O<sub>2</sub>) to the human pathogen Pseudomonas aeruginosa. By treating cells with levels of flow and H<sub>2</sub>O<sub>2</sub> that commonly co-occur in human host tissues,<sup>13</sup><sup>,</sup><sup>14</sup><sup>,</sup><sup>15</sup><sup>,</sup><sup>16</sup><sup>,</sup><sup>17</sup><sup>,</sup><sup>18</sup> we discover that previous reports significantly overestimate the H<sub>2</sub>O<sub>2</sub> levels required to block bacterial growth. Specifically, we establish that flow increases H<sub>2</sub>O<sub>2</sub> effectiveness 50-fold, explaining why previous studies lacking flow required much higher concentrations. Using natural H<sub>2</sub>O<sub>2</sub> levels, we identify the core H<sub>2</sub>O<sub>2</sub> regulon, characterize OxyR-mediated dynamic regulation, and demonstrate that multiple H<sub>2</sub>O<sub>2</sub> scavenging systems have redundant roles. By examining single-cell behavior, we serendipitously discover that the combined effects of H<sub>2</sub>O<sub>2</sub> and flow block pilus-driven surface migration. Thus, our results counter previous studies and reveal that natural levels of H<sub>2</sub>O<sub>2</sub> and flow synergize to restrict bacterial motility and survival. By studying two stressors at once, our research highlights the limitations of oversimplifying nature and demonstrates that physical and chemical stress can combine to yield unpredictable effects.</p>\",\"PeriodicalId\":11359,\"journal\":{\"name\":\"Current Biology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2024-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.cub.2024.10.029\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.cub.2024.10.029","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

在自然界中,生物体会经历多种应激源。然而,实验室研究使用的是批量培养,这种方法简化了实际情况,重点关注的是群体对单个应激源的反应。通过用人类宿主组织中常见的流动和 H2O2 水平处理细胞,13,14,15,16,17,18 我们发现之前的报告大大高估了阻止细菌生长所需的 H2O2 水平。具体来说,我们发现流动可将 H2O2 的有效性提高 50 倍,这就解释了为什么以前的研究在缺乏流动的情况下需要更高浓度的 H2O2。利用天然 H2O2 水平,我们确定了核心 H2O2 调节子,描述了 OxyR 介导的动态调节,并证明多个 H2O2 清除系统具有冗余作用。通过研究单细胞行为,我们偶然发现 H2O2 和流动的共同作用阻碍了柔毛驱动的表面迁移。因此,我们的研究结果与之前的研究相反,揭示了自然水平的 H2O2 和水流会协同限制细菌的运动和存活。通过同时研究两种应激源,我们的研究强调了过度简化自然的局限性,并证明物理和化学应激可以结合产生不可预知的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Combining multiple stressors blocks bacterial migration and growth.

In nature, organisms experience combinations of stressors. However, laboratory studies use batch cultures, which simplify reality and focus on population-level responses to individual stressors.1,2,3,4,5 In recent years, bacterial stress responses have been examined with single-cell resolution using microfluidics.6,7,8,9,10,11,12 Here, we use a microfluidic approach to simultaneously provide a physical stressor (shear flow) and a chemical stressor (H2O2) to the human pathogen Pseudomonas aeruginosa. By treating cells with levels of flow and H2O2 that commonly co-occur in human host tissues,13,14,15,16,17,18 we discover that previous reports significantly overestimate the H2O2 levels required to block bacterial growth. Specifically, we establish that flow increases H2O2 effectiveness 50-fold, explaining why previous studies lacking flow required much higher concentrations. Using natural H2O2 levels, we identify the core H2O2 regulon, characterize OxyR-mediated dynamic regulation, and demonstrate that multiple H2O2 scavenging systems have redundant roles. By examining single-cell behavior, we serendipitously discover that the combined effects of H2O2 and flow block pilus-driven surface migration. Thus, our results counter previous studies and reveal that natural levels of H2O2 and flow synergize to restrict bacterial motility and survival. By studying two stressors at once, our research highlights the limitations of oversimplifying nature and demonstrates that physical and chemical stress can combine to yield unpredictable effects.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current Biology
Current Biology 生物-生化与分子生物学
CiteScore
11.80
自引率
2.20%
发文量
869
审稿时长
46 days
期刊介绍: Current Biology is a comprehensive journal that showcases original research in various disciplines of biology. It provides a platform for scientists to disseminate their groundbreaking findings and promotes interdisciplinary communication. The journal publishes articles of general interest, encompassing diverse fields of biology. Moreover, it offers accessible editorial pieces that are specifically designed to enlighten non-specialist readers.
期刊最新文献
Australia's recently established predators restore complexity to food webs simplified by extinction. Deep-time origin of tympanic hearing in crown reptiles. Deep genetic substructure within bonobos. Inflation-induced motility for long-distance vertical migration. Mosaic evolution of a learning and memory circuit in Heliconiini butterflies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1