Allah Ditta, Munaza Asia, Abdelghani Errehymy, G. Mustafa, S. K. Maurya, Asif Mahmood
{"title":"通过 MIT Bag 模型 EoS 在 f(Q) 引力下接纳芬奇-斯基亚时空的各向异性恒星建模","authors":"Allah Ditta, Munaza Asia, Abdelghani Errehymy, G. Mustafa, S. K. Maurya, Asif Mahmood","doi":"10.1140/epjp/s13360-024-05778-9","DOIUrl":null,"url":null,"abstract":"<div><p>This study evaluates the viability and stability of anisotropic compact stellar objects by utilizing the Finch–Skea spacetime solutions in <i>f</i>(<i>Q</i>) gravity, where <i>Q</i> is a nonmetricity scalar that incorporates gravitational effects. The physical properties of the compact star EXO 1785-248 are investigated by employing a static spherical metric in the inner region and Schwarzschild spacetime in the outer region. The unknown parameters are determined using observed values of the radius and mass of the studied compact star. The suggested mass and radius values of EXO 1785-248 from existing literature are utilized. Subsequently, calculations are conducted to determine the essential features of the compact star and establish its stability and physical existence. Various aspects are analyzed, including energy density, pressure profiles, gradients, anisotropic factors, energy conditions, sound speeds, Tolman–Oppenheimer–Volkoff forces, equation of state components, mass function, compactification, and redshift, in order to achieve this objective.</p></div>","PeriodicalId":792,"journal":{"name":"The European Physical Journal Plus","volume":"139 11","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Anisotropic stellar modeling via MIT Bag model EoS admitting Finch–Skea spacetime in f(Q) gravity\",\"authors\":\"Allah Ditta, Munaza Asia, Abdelghani Errehymy, G. Mustafa, S. K. Maurya, Asif Mahmood\",\"doi\":\"10.1140/epjp/s13360-024-05778-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study evaluates the viability and stability of anisotropic compact stellar objects by utilizing the Finch–Skea spacetime solutions in <i>f</i>(<i>Q</i>) gravity, where <i>Q</i> is a nonmetricity scalar that incorporates gravitational effects. The physical properties of the compact star EXO 1785-248 are investigated by employing a static spherical metric in the inner region and Schwarzschild spacetime in the outer region. The unknown parameters are determined using observed values of the radius and mass of the studied compact star. The suggested mass and radius values of EXO 1785-248 from existing literature are utilized. Subsequently, calculations are conducted to determine the essential features of the compact star and establish its stability and physical existence. Various aspects are analyzed, including energy density, pressure profiles, gradients, anisotropic factors, energy conditions, sound speeds, Tolman–Oppenheimer–Volkoff forces, equation of state components, mass function, compactification, and redshift, in order to achieve this objective.</p></div>\",\"PeriodicalId\":792,\"journal\":{\"name\":\"The European Physical Journal Plus\",\"volume\":\"139 11\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The European Physical Journal Plus\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1140/epjp/s13360-024-05778-9\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal Plus","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epjp/s13360-024-05778-9","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Anisotropic stellar modeling via MIT Bag model EoS admitting Finch–Skea spacetime in f(Q) gravity
This study evaluates the viability and stability of anisotropic compact stellar objects by utilizing the Finch–Skea spacetime solutions in f(Q) gravity, where Q is a nonmetricity scalar that incorporates gravitational effects. The physical properties of the compact star EXO 1785-248 are investigated by employing a static spherical metric in the inner region and Schwarzschild spacetime in the outer region. The unknown parameters are determined using observed values of the radius and mass of the studied compact star. The suggested mass and radius values of EXO 1785-248 from existing literature are utilized. Subsequently, calculations are conducted to determine the essential features of the compact star and establish its stability and physical existence. Various aspects are analyzed, including energy density, pressure profiles, gradients, anisotropic factors, energy conditions, sound speeds, Tolman–Oppenheimer–Volkoff forces, equation of state components, mass function, compactification, and redshift, in order to achieve this objective.
期刊介绍:
The aims of this peer-reviewed online journal are to distribute and archive all relevant material required to document, assess, validate and reconstruct in detail the body of knowledge in the physical and related sciences.
The scope of EPJ Plus encompasses a broad landscape of fields and disciplines in the physical and related sciences - such as covered by the topical EPJ journals and with the explicit addition of geophysics, astrophysics, general relativity and cosmology, mathematical and quantum physics, classical and fluid mechanics, accelerator and medical physics, as well as physics techniques applied to any other topics, including energy, environment and cultural heritage.