Hui Qiao, Qile Zhao, Jie Li, Hang Lu, Jinfang Wu, Liting Yang, Yuxin Ma, Yue Yin, Fang Guo, Yiwen Wang, Wenbo Wang
{"title":"为大规模净化复杂油水乳化液和采油大规模构建稳定的多功能水凝胶界面","authors":"Hui Qiao, Qile Zhao, Jie Li, Hang Lu, Jinfang Wu, Liting Yang, Yuxin Ma, Yue Yin, Fang Guo, Yiwen Wang, Wenbo Wang","doi":"10.1016/j.jhazmat.2024.136552","DOIUrl":null,"url":null,"abstract":"Inspired by the multi-level structure of grass clumps in nature, a novel filter with plexiform-structured hydrogel interface was constructed using sepiolite-derived silica nanofiber (SiNF) as the supporter and crosslinked polyvinyl alcohol (cl-PVA) hydrogel as the coating. Experimental test, DFT and MD calculations have confirmed that the addition of SiNF can not only enhance oil-water separation efficiency, but also improve the stability of hydrogel coating. The hydrogel interface with excellent stability and superhydrophilic/underwater superoleophobicity can be manufactured on a large copper mesh (1<!-- --> <!-- -->m × 1.2<!-- --> <!-- -->m) to achieve large-scale production. The surface-engineered mesh (named cl-PVA/SiNF@Ag-Cu) can be assembled on a self-designed equipment for continuous purification of emulsion wastewater (processing capacity: 576.00<!-- --> <!-- -->L/day), achieving a high separation efficiency of 99.7% for complex oily emulsion only under the action of gravity, and can simultaneously recover oils. After being treated under extreme conditions such as strong acid/alkali, high/low temperature (100°C, 200°C, and -18°C), high salt concentration, sandpaper wear, and long-term aging, the surface structure of cl-PVA/SiNF@Ag-Cu filter remains stable. The antifouling, antibacterial, and anticorrosion capabilities of the filter give it the potential for long-term and large-scale purification processes. Planting and breeding experiments have confirmed that purified water is harmless to animals and plants.","PeriodicalId":361,"journal":{"name":"Journal of Hazardous Materials","volume":"34 1","pages":""},"PeriodicalIF":12.2000,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Scale-up construction of stable multifunctional hydrogel interfaces for large-scale purification of complex oil-water emulsions and oil recovery\",\"authors\":\"Hui Qiao, Qile Zhao, Jie Li, Hang Lu, Jinfang Wu, Liting Yang, Yuxin Ma, Yue Yin, Fang Guo, Yiwen Wang, Wenbo Wang\",\"doi\":\"10.1016/j.jhazmat.2024.136552\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Inspired by the multi-level structure of grass clumps in nature, a novel filter with plexiform-structured hydrogel interface was constructed using sepiolite-derived silica nanofiber (SiNF) as the supporter and crosslinked polyvinyl alcohol (cl-PVA) hydrogel as the coating. Experimental test, DFT and MD calculations have confirmed that the addition of SiNF can not only enhance oil-water separation efficiency, but also improve the stability of hydrogel coating. The hydrogel interface with excellent stability and superhydrophilic/underwater superoleophobicity can be manufactured on a large copper mesh (1<!-- --> <!-- -->m × 1.2<!-- --> <!-- -->m) to achieve large-scale production. The surface-engineered mesh (named cl-PVA/SiNF@Ag-Cu) can be assembled on a self-designed equipment for continuous purification of emulsion wastewater (processing capacity: 576.00<!-- --> <!-- -->L/day), achieving a high separation efficiency of 99.7% for complex oily emulsion only under the action of gravity, and can simultaneously recover oils. After being treated under extreme conditions such as strong acid/alkali, high/low temperature (100°C, 200°C, and -18°C), high salt concentration, sandpaper wear, and long-term aging, the surface structure of cl-PVA/SiNF@Ag-Cu filter remains stable. The antifouling, antibacterial, and anticorrosion capabilities of the filter give it the potential for long-term and large-scale purification processes. Planting and breeding experiments have confirmed that purified water is harmless to animals and plants.\",\"PeriodicalId\":361,\"journal\":{\"name\":\"Journal of Hazardous Materials\",\"volume\":\"34 1\",\"pages\":\"\"},\"PeriodicalIF\":12.2000,\"publicationDate\":\"2024-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Hazardous Materials\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jhazmat.2024.136552\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hazardous Materials","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.jhazmat.2024.136552","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
Scale-up construction of stable multifunctional hydrogel interfaces for large-scale purification of complex oil-water emulsions and oil recovery
Inspired by the multi-level structure of grass clumps in nature, a novel filter with plexiform-structured hydrogel interface was constructed using sepiolite-derived silica nanofiber (SiNF) as the supporter and crosslinked polyvinyl alcohol (cl-PVA) hydrogel as the coating. Experimental test, DFT and MD calculations have confirmed that the addition of SiNF can not only enhance oil-water separation efficiency, but also improve the stability of hydrogel coating. The hydrogel interface with excellent stability and superhydrophilic/underwater superoleophobicity can be manufactured on a large copper mesh (1 m × 1.2 m) to achieve large-scale production. The surface-engineered mesh (named cl-PVA/SiNF@Ag-Cu) can be assembled on a self-designed equipment for continuous purification of emulsion wastewater (processing capacity: 576.00 L/day), achieving a high separation efficiency of 99.7% for complex oily emulsion only under the action of gravity, and can simultaneously recover oils. After being treated under extreme conditions such as strong acid/alkali, high/low temperature (100°C, 200°C, and -18°C), high salt concentration, sandpaper wear, and long-term aging, the surface structure of cl-PVA/SiNF@Ag-Cu filter remains stable. The antifouling, antibacterial, and anticorrosion capabilities of the filter give it the potential for long-term and large-scale purification processes. Planting and breeding experiments have confirmed that purified water is harmless to animals and plants.
期刊介绍:
The Journal of Hazardous Materials serves as a global platform for promoting cutting-edge research in the field of Environmental Science and Engineering. Our publication features a wide range of articles, including full-length research papers, review articles, and perspectives, with the aim of enhancing our understanding of the dangers and risks associated with various materials concerning public health and the environment. It is important to note that the term "environmental contaminants" refers specifically to substances that pose hazardous effects through contamination, while excluding those that do not have such impacts on the environment or human health. Moreover, we emphasize the distinction between wastes and hazardous materials in order to provide further clarity on the scope of the journal. We have a keen interest in exploring specific compounds and microbial agents that have adverse effects on the environment.