{"title":"以 CD132 为靶点的人源化单克隆抗体 2D4 是一种治疗系统性红斑狼疮的有效方法","authors":"Huiqi Yin, Liming Li, Xiwei Feng, Zijun Wang, Meiling Zheng, Junpeng Zhao, Xinyu Fan, Wei Wu, Lingyu Gao, Yijing Zhan, Ming Zhao, Qianjin Lu","doi":"10.1038/s41392-024-02017-6","DOIUrl":null,"url":null,"abstract":"<p>Current therapies for systemic lupus erythematosus that target a particular factor or cell type exhibit limited effectiveness. To address this limitation, our focus was on CD132, a subunit common to six inflammatory factor receptors implicated in SLE. Our study revealed heightened CD132 expression in SLE patients’ lymphocytes, contributing to the production of pro-inflammatory cytokines and immunoglobulins. We developed a novel humanized anti-CD132 monoclonal antibody, named as 2D4. 2D4 efficiently blocked IL-21 and IL-15, with limited effectiveness against IL-2, thereby suppressing T and B cells without disrupting immune tolerance. In the mouse immunization model, 2D4 virtually inhibited T cell-dependent, antigen-specific B-cell response. In lupus murine models, 2D4 mitigated inflammation by suppressing multiple pro-inflammatory cytokines and anti-dsDNA antibody titers, also diminishing proteinuria and glomerulonephritis. Compared to Belimumab, 2D4 exhibited superior efficacy in ameliorating the inflammatory state and preserving renal function. Moreover, 2D4 exhibited the ability to inhibit the production of pro-inflammatory factors and autoantibodies in PBMCs from individuals with SLE, highlighting its therapeutic potential for SLE individuals. Potent, 2D4 has the potential to significantly improve clinical outcomes in SLE and other complex autoimmune disorders.</p>","PeriodicalId":21766,"journal":{"name":"Signal Transduction and Targeted Therapy","volume":"37 1","pages":""},"PeriodicalIF":40.8000,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"2D4, a humanized monoclonal antibody targeting CD132, is a promising treatment for systemic lupus erythematosus\",\"authors\":\"Huiqi Yin, Liming Li, Xiwei Feng, Zijun Wang, Meiling Zheng, Junpeng Zhao, Xinyu Fan, Wei Wu, Lingyu Gao, Yijing Zhan, Ming Zhao, Qianjin Lu\",\"doi\":\"10.1038/s41392-024-02017-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Current therapies for systemic lupus erythematosus that target a particular factor or cell type exhibit limited effectiveness. To address this limitation, our focus was on CD132, a subunit common to six inflammatory factor receptors implicated in SLE. Our study revealed heightened CD132 expression in SLE patients’ lymphocytes, contributing to the production of pro-inflammatory cytokines and immunoglobulins. We developed a novel humanized anti-CD132 monoclonal antibody, named as 2D4. 2D4 efficiently blocked IL-21 and IL-15, with limited effectiveness against IL-2, thereby suppressing T and B cells without disrupting immune tolerance. In the mouse immunization model, 2D4 virtually inhibited T cell-dependent, antigen-specific B-cell response. In lupus murine models, 2D4 mitigated inflammation by suppressing multiple pro-inflammatory cytokines and anti-dsDNA antibody titers, also diminishing proteinuria and glomerulonephritis. Compared to Belimumab, 2D4 exhibited superior efficacy in ameliorating the inflammatory state and preserving renal function. Moreover, 2D4 exhibited the ability to inhibit the production of pro-inflammatory factors and autoantibodies in PBMCs from individuals with SLE, highlighting its therapeutic potential for SLE individuals. Potent, 2D4 has the potential to significantly improve clinical outcomes in SLE and other complex autoimmune disorders.</p>\",\"PeriodicalId\":21766,\"journal\":{\"name\":\"Signal Transduction and Targeted Therapy\",\"volume\":\"37 1\",\"pages\":\"\"},\"PeriodicalIF\":40.8000,\"publicationDate\":\"2024-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Signal Transduction and Targeted Therapy\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1038/s41392-024-02017-6\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Signal Transduction and Targeted Therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41392-024-02017-6","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
目前针对特定因子或细胞类型的系统性红斑狼疮疗法效果有限。为了解决这一局限性,我们的研究重点是 CD132,它是与系统性红斑狼疮有关的六种炎症因子受体的共同亚基。我们的研究发现,CD132 在系统性红斑狼疮患者淋巴细胞中的表达增加,导致促炎细胞因子和免疫球蛋白的产生。我们开发了一种新型人源化抗 CD132 单克隆抗体,命名为 2D4。2D4 能有效阻断 IL-21 和 IL-15,但对 IL-2 的作用有限,从而在不破坏免疫耐受的情况下抑制 T 细胞和 B 细胞。在小鼠免疫模型中,2D4 几乎抑制了依赖 T 细胞的抗原特异性 B 细胞反应。在狼疮小鼠模型中,2D4通过抑制多种促炎细胞因子和抗dsDNA抗体滴度来减轻炎症,同时还能减少蛋白尿和肾小球肾炎。与贝利木单抗相比,2D4 在改善炎症状态和保护肾功能方面表现出更优越的疗效。此外,2D4 还能抑制系统性红斑狼疮患者的白细胞介导细胞(PBMC)中促炎因子和自身抗体的产生,这突显了它对系统性红斑狼疮患者的治疗潜力。2D4药效强大,有望显著改善系统性红斑狼疮和其他复杂的自身免疫性疾病的临床疗效。
2D4, a humanized monoclonal antibody targeting CD132, is a promising treatment for systemic lupus erythematosus
Current therapies for systemic lupus erythematosus that target a particular factor or cell type exhibit limited effectiveness. To address this limitation, our focus was on CD132, a subunit common to six inflammatory factor receptors implicated in SLE. Our study revealed heightened CD132 expression in SLE patients’ lymphocytes, contributing to the production of pro-inflammatory cytokines and immunoglobulins. We developed a novel humanized anti-CD132 monoclonal antibody, named as 2D4. 2D4 efficiently blocked IL-21 and IL-15, with limited effectiveness against IL-2, thereby suppressing T and B cells without disrupting immune tolerance. In the mouse immunization model, 2D4 virtually inhibited T cell-dependent, antigen-specific B-cell response. In lupus murine models, 2D4 mitigated inflammation by suppressing multiple pro-inflammatory cytokines and anti-dsDNA antibody titers, also diminishing proteinuria and glomerulonephritis. Compared to Belimumab, 2D4 exhibited superior efficacy in ameliorating the inflammatory state and preserving renal function. Moreover, 2D4 exhibited the ability to inhibit the production of pro-inflammatory factors and autoantibodies in PBMCs from individuals with SLE, highlighting its therapeutic potential for SLE individuals. Potent, 2D4 has the potential to significantly improve clinical outcomes in SLE and other complex autoimmune disorders.
期刊介绍:
Signal Transduction and Targeted Therapy is an open access journal that focuses on timely publication of cutting-edge discoveries and advancements in basic science and clinical research related to signal transduction and targeted therapy.
Scope: The journal covers research on major human diseases, including, but not limited to:
Cancer,Cardiovascular diseases,Autoimmune diseases,Nervous system diseases.