Alfa Rossi, Devrim Toslak, Muhammet Kazim Erol, Mojtaba Rahimi, Taeyoon Son, R V Paul Chan, Xincheng Yao
{"title":"经济实惠的超宽视场智能手机 PedCam,用于全面的儿科视网膜检查。","authors":"Alfa Rossi, Devrim Toslak, Muhammet Kazim Erol, Mojtaba Rahimi, Taeyoon Son, R V Paul Chan, Xincheng Yao","doi":"10.1364/BOE.537633","DOIUrl":null,"url":null,"abstract":"<p><p>Widefield fundus photography is critical for the detection, documentation, and management of pediatric eye diseases. Existing clinical pediatric fundus cameras offer a limited field of view (FOV) and suboptimal image contrast, hindering comprehensive peripheral retina examination. Additionally, the high cost and lack of portability of commercial devices restrict their use in resource-limited settings. We introduce a cost-effective smartphone-based pediatric camera (PedCam) that provides a 180° eye angle (126° visual angle) snapshot FOV. Utilizing trans-pars planar illumination, the device enables nonmydriatic imaging by allocating the pupil exclusively for imaging, eliminating the need for pharmacological pupillary dilation. By adjusting the optical axis of the PedCam relative to the ocular axis, the effective FOV can be expanded up to 240° eye angle (180° visual angle), enabling complete retinal evaluation. This innovative smartphone PedCam represents a significant advancement in affordable telemedicine for the screening, monitoring, and management of retinopathy of prematurity and other pediatric eye conditions.</p>","PeriodicalId":8969,"journal":{"name":"Biomedical optics express","volume":"15 11","pages":"6171-6182"},"PeriodicalIF":2.9000,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11563323/pdf/","citationCount":"0","resultStr":"{\"title\":\"Affordable ultra-widefield smartphone PedCam for comprehensive pediatric retinal examination.\",\"authors\":\"Alfa Rossi, Devrim Toslak, Muhammet Kazim Erol, Mojtaba Rahimi, Taeyoon Son, R V Paul Chan, Xincheng Yao\",\"doi\":\"10.1364/BOE.537633\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Widefield fundus photography is critical for the detection, documentation, and management of pediatric eye diseases. Existing clinical pediatric fundus cameras offer a limited field of view (FOV) and suboptimal image contrast, hindering comprehensive peripheral retina examination. Additionally, the high cost and lack of portability of commercial devices restrict their use in resource-limited settings. We introduce a cost-effective smartphone-based pediatric camera (PedCam) that provides a 180° eye angle (126° visual angle) snapshot FOV. Utilizing trans-pars planar illumination, the device enables nonmydriatic imaging by allocating the pupil exclusively for imaging, eliminating the need for pharmacological pupillary dilation. By adjusting the optical axis of the PedCam relative to the ocular axis, the effective FOV can be expanded up to 240° eye angle (180° visual angle), enabling complete retinal evaluation. This innovative smartphone PedCam represents a significant advancement in affordable telemedicine for the screening, monitoring, and management of retinopathy of prematurity and other pediatric eye conditions.</p>\",\"PeriodicalId\":8969,\"journal\":{\"name\":\"Biomedical optics express\",\"volume\":\"15 11\",\"pages\":\"6171-6182\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11563323/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedical optics express\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1364/BOE.537633\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical optics express","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1364/BOE.537633","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Affordable ultra-widefield smartphone PedCam for comprehensive pediatric retinal examination.
Widefield fundus photography is critical for the detection, documentation, and management of pediatric eye diseases. Existing clinical pediatric fundus cameras offer a limited field of view (FOV) and suboptimal image contrast, hindering comprehensive peripheral retina examination. Additionally, the high cost and lack of portability of commercial devices restrict their use in resource-limited settings. We introduce a cost-effective smartphone-based pediatric camera (PedCam) that provides a 180° eye angle (126° visual angle) snapshot FOV. Utilizing trans-pars planar illumination, the device enables nonmydriatic imaging by allocating the pupil exclusively for imaging, eliminating the need for pharmacological pupillary dilation. By adjusting the optical axis of the PedCam relative to the ocular axis, the effective FOV can be expanded up to 240° eye angle (180° visual angle), enabling complete retinal evaluation. This innovative smartphone PedCam represents a significant advancement in affordable telemedicine for the screening, monitoring, and management of retinopathy of prematurity and other pediatric eye conditions.
期刊介绍:
The journal''s scope encompasses fundamental research, technology development, biomedical studies and clinical applications. BOEx focuses on the leading edge topics in the field, including:
Tissue optics and spectroscopy
Novel microscopies
Optical coherence tomography
Diffuse and fluorescence tomography
Photoacoustic and multimodal imaging
Molecular imaging and therapies
Nanophotonic biosensing
Optical biophysics/photobiology
Microfluidic optical devices
Vision research.