Kaitlin T Wozniak, Zachary A Manning, Ruiting Huang, Steven Cox, Sam C Butler, Sebastian Ferlo, Len Zheleznyak, Lisen Xu, Jonathan D Ellis, Krystel R Huxlin, Wayne H Knox
{"title":"水凝胶和兔子角膜中飞秒激光诱导折射率变化(LIRIC)的多光子缩放。","authors":"Kaitlin T Wozniak, Zachary A Manning, Ruiting Huang, Steven Cox, Sam C Butler, Sebastian Ferlo, Len Zheleznyak, Lisen Xu, Jonathan D Ellis, Krystel R Huxlin, Wayne H Knox","doi":"10.1364/BOE.537705","DOIUrl":null,"url":null,"abstract":"<p><p>To find optimal conditions for performing laser induced refractive index change (LIRIC) in living eyes with both safety and efficacy, we investigated multiphoton excitation scaling of this procedure in hydrogel and excised corneal tissue. Three distinct wavelength modalities were examined: high-repetition-rate (HRR) and low-repetition-rate (LRR) 405 nm systems, as well as 800 nm and 1035 nm systems, whose LIRIC-inducing properties are described for the first time. Of all the systems, LRR 405 nm-LIRIC was able to produce the highest phase shifts at the lowest average laser powers. Relative merits and drawbacks to each modality are discussed as they relate to future efforts towards LIRIC-based refractive error correction in humans.</p>","PeriodicalId":8969,"journal":{"name":"Biomedical optics express","volume":"15 11","pages":"6242-6258"},"PeriodicalIF":2.9000,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11563327/pdf/","citationCount":"0","resultStr":"{\"title\":\"Multiphoton scaling of femtosecond laser-induced refractive index change (LIRIC) in hydrogels and rabbit cornea.\",\"authors\":\"Kaitlin T Wozniak, Zachary A Manning, Ruiting Huang, Steven Cox, Sam C Butler, Sebastian Ferlo, Len Zheleznyak, Lisen Xu, Jonathan D Ellis, Krystel R Huxlin, Wayne H Knox\",\"doi\":\"10.1364/BOE.537705\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>To find optimal conditions for performing laser induced refractive index change (LIRIC) in living eyes with both safety and efficacy, we investigated multiphoton excitation scaling of this procedure in hydrogel and excised corneal tissue. Three distinct wavelength modalities were examined: high-repetition-rate (HRR) and low-repetition-rate (LRR) 405 nm systems, as well as 800 nm and 1035 nm systems, whose LIRIC-inducing properties are described for the first time. Of all the systems, LRR 405 nm-LIRIC was able to produce the highest phase shifts at the lowest average laser powers. Relative merits and drawbacks to each modality are discussed as they relate to future efforts towards LIRIC-based refractive error correction in humans.</p>\",\"PeriodicalId\":8969,\"journal\":{\"name\":\"Biomedical optics express\",\"volume\":\"15 11\",\"pages\":\"6242-6258\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11563327/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedical optics express\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1364/BOE.537705\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical optics express","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1364/BOE.537705","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Multiphoton scaling of femtosecond laser-induced refractive index change (LIRIC) in hydrogels and rabbit cornea.
To find optimal conditions for performing laser induced refractive index change (LIRIC) in living eyes with both safety and efficacy, we investigated multiphoton excitation scaling of this procedure in hydrogel and excised corneal tissue. Three distinct wavelength modalities were examined: high-repetition-rate (HRR) and low-repetition-rate (LRR) 405 nm systems, as well as 800 nm and 1035 nm systems, whose LIRIC-inducing properties are described for the first time. Of all the systems, LRR 405 nm-LIRIC was able to produce the highest phase shifts at the lowest average laser powers. Relative merits and drawbacks to each modality are discussed as they relate to future efforts towards LIRIC-based refractive error correction in humans.
期刊介绍:
The journal''s scope encompasses fundamental research, technology development, biomedical studies and clinical applications. BOEx focuses on the leading edge topics in the field, including:
Tissue optics and spectroscopy
Novel microscopies
Optical coherence tomography
Diffuse and fluorescence tomography
Photoacoustic and multimodal imaging
Molecular imaging and therapies
Nanophotonic biosensing
Optical biophysics/photobiology
Microfluidic optical devices
Vision research.